@article{TalukderSenChakrabortietal.2014, author = {Talukder, Srijeeta and Sen, Shrabani and Chakraborti, Prantik and Metzler, Ralf and Banik, Suman K. and Chaudhury, Pinaki}, title = {Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4869112}, pages = {10}, year = {2014}, abstract = {We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction epsilon(hb)(AT) for an AT base pair and the ring factor. turn out to be the most sensitive parameters. In addition, the stacking interaction epsilon(st)(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization. (c) 2014 AIP Publishing LLC.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Mixing and segregation of ring polymers: spatial confinement and molecular crowding effects}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/5/053047}, pages = {19}, year = {2014}, abstract = {During the life cycle of bacterial cells the non-mixing of the two ring-shaped daughter genomes is an important prerequisite for the cell division process. Mimicking the environments inside highly crowded biological cells, we study the dynamics and statistical behavior of two flexible ring polymers in the presence of cylindrical confinement and crowding molecules. From extensive computer simulations we determine the degree of ring-ring overlap and the number of inter-monomer contacts for varying volume fractions phi of crowders. We also examine the entropic demixing of polymer rings in the presence of mobile crowders and determine the characteristic times of the internal polymer dynamics. Effects of the ring length on ring-ring overlap are also analyzed. In particular, on systematic variation of the fraction of crowding molecules, a (1 - phi)-scaling is found for the ring-ring overlap length along the cylinder axis, and a non-monotonic dependence of the 3D ring-ring contact number with a maximum at phi approximate to 0.2 is obtained. Our results demonstrate that polymer rings are demixed and separated by particular entropy-favourable partitioning of crowders along the axis of the cylindrical simulation box. These findings help to rationalize the implications of macromolecular crowding for circular DNA molecules in confined spaces inside bacteria as well as in localized cellular compartments inside eukaryotic cells.}, language = {en} } @article{GodecChechkinBarkaietal.2014, author = {Godec, Aljaz and Chechkin, Aleksei V. and Barkai, Eli and Kantz, Holger and Metzler, Ralf}, title = {Localisation and universal fluctuations in ultraslow diffusion processes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {49}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/49/492002}, pages = {10}, year = {2014}, abstract = {We study ultraslow diffusion processes with logarithmic mean squared displacement (MSD) < x(2)(t)> similar or equal to log(gamma)t. Comparison of annealed (renewal) continuous time random walks (CTRWs) with logarithmic waiting time distribution psi(tau) similar or equal to 1/(tau log(1+gamma)tau) and Sinai diffusion in quenched random landscapes reveals striking similarities, despite the great differences in their physical nature. In particular, they exhibit a weakly non-ergodic disparity of the time-averaged and ensemble-averaged MSDs. Remarkably, for the CTRW we observe that the fluctuations of time averages become universal, with an exponential suppression of mobile trajectories. We discuss the fundamental connection between the Golosov localization effect and non-ergodicity in the sense of the disparity between ensemble-averaged MSD and time-averaged MSD.}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Ageing and confinement in non-ergodic heterogeneous diffusion processes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {48}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/48/485002}, pages = {18}, year = {2014}, abstract = {We study the effects of ageing-the time delay between initiation of the physical process at t = 0 and start of observation at some time t(a) > 0-and spatial confinement on the properties of heterogeneous diffusion processes (HDPs) with deterministic power-law space-dependent diffusivities, D(x) = D-0 vertical bar x vertical bar(alpha). From analysis of the ensemble and time averaged mean squared displacements and the ergodicity breaking parameter quantifying the inherent degree of irreproducibility of individual realizations of the HDP we obtain striking similarities to ageing subdiffusive continuous time random walks with scale-free waiting time distributions. We also explore how both processes can be distinguished. For confined HDPs we study the long-time saturation of the ensemble and time averaged particle displacements as well as the magnitude of the inherent scatter of time averaged displacements and contrast the outcomes to the results known for other anomalous diffusion processes under confinement.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Sensing viruses by mechanical tension of DNA in responsive hydrogels}, series = {Physical review : X, Expanding access}, volume = {4}, journal = {Physical review : X, Expanding access}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.4.021002}, pages = {13}, year = {2014}, abstract = {The rapid worldwide spread of severe viral infections, often involving novel mutations of viruses, poses major challenges to our health-care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for broad applications in local health-care centers, such tools should be relatively cheap and easy to use. In this paper, we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of prestretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay as a possible tool for efficient and specific virus screening.}, language = {en} } @article{KruesemannGodecMetzler2014, author = {Kr{\"u}semann, Henning and Godec, Aljaz and Metzler, Ralf}, title = {First-passage statistics for aging diffusion in systems with annealed and quenched disorder}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {89}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.89.040101}, pages = {5}, year = {2014}, abstract = {Aging, the dependence of the dynamics of a physical process on the time t(a) since its original preparation, is observed in systems ranging from the motion of charge carriers in amorphous semiconductors over the blinking dynamics of quantum dots to the tracer dispersion in living biological cells. Here we study the effects of aging on one of the most fundamental properties of a stochastic process, the first-passage dynamics. We find that for an aging continuous time random walk process, the scaling exponent of the density of first-passage times changes twice as the aging progresses and reveals an intermediate scaling regime. The first-passage dynamics depends on t(a) differently for intermediate and strong aging. Similar crossovers are obtained for the first-passage dynamics for a confined and driven particle. Comparison to the motion of an aged particle in the quenched trap model with a bias shows excellent agreement with our analytical findings. Our results demonstrate how first-passage measurements can be used to unravel the age t(a) of a physical system.}, language = {en} } @article{GhoshCherstvyMetzler2014, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Deformation propagation in responsive polymer network films}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {141}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4893056}, pages = {9}, year = {2014}, abstract = {We study the elastic deformations in a cross-linked polymer network film triggered by the binding of submicron particles with a sticky surface, mimicking the interactions of viral pathogens with thin films of stimulus-responsive polymeric materials such as hydrogels. From extensive Langevin Dynamics simulations we quantify how far the network deformations propagate depending on the elasticity parameters of the network and the adhesion strength of the particles. We examine the dynamics of the collective area shrinkage of the network and obtain some simple relations for the associated characteristic decay lengths. A detailed analysis elucidates how the elastic energy of the network is distributed between stretching and compression modes in response to the particle binding. We also examine the force-distance curves of the repulsion or attraction interactions for a pair of sticky particles in the polymer network film as a function of the particle-particle separation. The results of this computational study provide new insight into collective phenomena in soft polymer network films and may, in particular, be applied to applications for visual detection of pathogens such as viruses via a macroscopic response of thin films of cross-linked hydrogels. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{GoychukKharchenkoMetzler2014, author = {Goychuk, Igor and Kharchenko, Vasyl O. and Metzler, Ralf}, title = {Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {31}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp01234h}, pages = {16524 -- 16535}, year = {2014}, abstract = {The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity}, series = {Soft matter}, volume = {10}, journal = {Soft matter}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c3sm52846d}, pages = {1591 -- 1601}, year = {2014}, abstract = {We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.}, language = {en} } @article{GoychukKharchenkoMetzler2014, author = {Goychuk, Igor A. and Kharchenko, Vasyl O. and Metzler, Ralf}, title = {Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, number = {16}, publisher = {the Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, pages = {16524 -- 16535}, year = {2014}, abstract = {The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.}, language = {en} } @article{BauerGodecMetzler2014, author = {Bauer, Maximilian and Godec, Aljaž and Metzler, Ralf}, title = {Diffusion of finite-size particles in two-dimensional channels with random wall configurations}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {16}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {13}, publisher = {RSC Publications}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C3CP55160A}, pages = {6118 -- 6128}, year = {2014}, abstract = {Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].}, language = {en} } @article{SandevMetzlerTomovski2014, author = {Sandev, Trifce and Metzler, Ralf and Tomovski, Zivorad}, title = {Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise}, series = {Journal of mathematical physics}, volume = {55}, journal = {Journal of mathematical physics}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0022-2488}, doi = {10.1063/1.4863478}, pages = {23}, year = {2014}, abstract = {We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion.}, language = {en} }