@phdthesis{Hilgers2018, author = {Hilgers, Leon}, title = {From innovation to diversification}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2018}, language = {en} } @phdthesis{Fuhrmann2018, author = {Fuhrmann, Saskia}, title = {Physiologically-based pharmacokinetic and mechanism-based pharmacodynamic modelling of monoclonal antibodies with a focus on tumour targeting}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418861}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 171}, year = {2018}, abstract = {Monoclonal antibodies (mAbs) are an innovative group of drugs with increasing clinical importance in oncology, combining high specificity with generally low toxicity. There are, however, numerous challenges associated with the development of mAbs as therapeutics. Mechanistic understanding of factors that govern the pharmacokinetics (PK) of mAbs is critical for drug development and the optimisation of effective therapies; in particular, adequate dosing strategies can improve patient quality life and lower drug cost. Physiologically-based PK (PBPK) models offer a physiological and mechanistic framework, which is of advantage in the context of animal to human extrapolation. Unlike for small molecule drugs, however, there is no consensus on how to model mAb disposition in a PBPK context. Current PBPK models for mAb PK hugely vary in their representation of physiology and parameterisation. Their complexity poses a challenge for their applications, e.g., translating knowledge from animal species to humans. In this thesis, we developed and validated a consensus PBPK model for mAb disposition taking into account recent insights into mAb distribution (antibody biodistribution coefficients and interstitial immunoglobulin G (IgG) pharmacokinetics) to predict tissue PK across several pre-clinical species and humans based on plasma data only. The model allows to a priori predict target-independent (unspecific) mAb disposition processes as well as mAb disposition in concentration ranges, for which the unspecific clearance (CL) dominates target-mediated CL processes. This is often the case for mAb therapies at steady state dosing. The consensus PBPK model was then used and refined to address two important problems: 1) Immunodeficient mice are crucial models to evaluate mAb efficacy in cancer therapy. Protection from elimination by binding to the neonatal Fc receptor is known to be a major pathway influencing the unspecific CL of both, endogenous and therapeutic IgG. The concentration of endogenous IgG, however, is reduced in immunodeficient mouse models, and this effect on unspecific mAb CL is unknown, yet of great importance for the extrapolation to human in the context of mAb cancer therapy. 2) The distribution of mAbs into solid tumours is of great interest. To comprehensively investigate mAb distribution within tumour tissue and its implications for therapeutic efficacy, we extended the consensus PBPK model by a detailed tumour distribution model incorporating a cell-level model for mAb-target interaction. We studied the impact of variations in tumour microenvironment on therapeutic efficacy and explored the plausibility of different mechanisms of action in mAb cancer therapy. The mathematical findings and observed phenomena shed new light on therapeutic utility and dosing regimens in mAb cancer treatment.}, language = {en} } @phdthesis{Fer2018, author = {Fer, Istem}, title = {Modeling past, present and future climate induced vegetation changes in East Africa}, doi = {10.25932/publishup-42777}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427777}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 156}, year = {2018}, abstract = {Ostafrika ist ein nat{\"u}rliches Labor: Durch ein Studium seiner einzigartigen geologischen und biologischen Geschichte lassen sich unsere Theorien und Modelle {\"u}berpr{\"u}fen und verbessern. Ein Studium seiner Gegenwart und seiner Zukunft wiederum hilft uns dabei, die global bedeutende Artenvielfalt und die {\"o}kosystemaren Dienstleistungen Ostafrikas zu sch{\"u}tzen. Eine zentrale Rolle spielt dabei spielt die ostafrikanische Vegetation, deren Dynamiken in dieser Dissertation durch Computersimulationen quantifiziert werden sollen. {\"U}ber Computersimulationen lassen sich fr{\"u}here Rahmenbedingungen reproduzieren, Voraussagen treffen oder Simulationsexperimente durchf{\"u}hren, die durch Feldforschung nicht m{\"o}glich w{\"a}ren. Zuallererst muss jedoch ihre Leistungsf{\"a}higkeit {\"u}berpr{\"u}ft werden. Die von dem Modell anhand der heutigen Inputs gelieferten Ergebnisse stimmten weitgehend mit heutigen Beobachtungen ostafrikanischer Vegetation {\"u}berein. Als n{\"a}chstes wurde die fr{\"u}here Vegetation simuliert, f{\"u}r die fossile Pollen-Daten zum Abgleich vorliegen. {\"U}ber Computermodelle lassen sich Wissensl{\"u}cken zwischen Standorten {\"u}berbr{\"u}cken, bei denen wir {\"u}ber fossile Pollen-Daten verf{\"u}gen, sodass ein vollst{\"a}ndigeres Bild der Vergangenheit entsteht. Zus{\"a}tzlich validiert wurde die Leistungsf{\"a}higkeit des Modells durch die hohe {\"U}bereinstimmung zwischen Modell und Pollen-Daten, wo sie im Raum {\"u}berlappen. Nachdem das Modell getestet und f{\"u}r die Region validiert war, konnte eine der seit langem offenen Fragen {\"u}ber die ostafrikanische Vegetation angegangen werden, n{\"a}mlich wie Ostafrika seines Tropenwaldes verlustig gehen konnte. In den Tropen wird die heutige Vegetation weltweit haupts{\"a}chlich von W{\"a}ldern dominiert, mit Ausnahme der Tropengebiete Ostafrikas, wo W{\"a}lder nur noch stellenweise an der K{\"u}ste und im Hochland vorkommen. Durch eine Reihe von Simulationsexperimenten konnte aufgezeigt werden, unter welchen Bedingungen jene Waldgebiete fr{\"u}her zusammenhingen und schließlich fragmentiert wurden. Die Studie hat erwiesen, wie empfindlich die ostafrikanische Vegetation f{\"u}r die Klimaschwankungen ist, die durch den k{\"u}nftigen Klimawandel zu erwarten sind. Weitere Auswirkungen auf das ostafrikanische Klima ergeben sich aus dem El Ni{\~n}o/Southern Oscillation-Ph{\"a}nomen (ENSO), das aus Temperaturfluktuationen zwischen dem Ozean und der Atmosph{\"a}re herr{\"u}hrt und k{\"u}nftig an Intensit{\"a}t zunehmen d{\"u}rfte. Die derzeitigen Klimamodelle sind allerdings noch nicht gut genug beim Erfassen solcher Ereignismuster. In einer Studie wurde der Einfluss des ENSO-Ph{\"a}nomens auf die ostafrikanische Vegetation quantifiziert und dabei aufgezeigt, wie sehr sich die k{\"u}nftige Vegetation von den heute simulierten Ergebnissen unterscheiden k{\"o}nnte, bei denen der genaue ENSO-Beitrag nicht ber{\"u}cksichtigt werden kann. Bei der Berechnung der k{\"u}nftigen weltweiten CO2-Bilanz und den zu treffenden Entscheidungen stellt dies einen zus{\"a}tzlichen Unsicherheitsfaktor dar.}, language = {en} } @phdthesis{Fabian2018, author = {Fabian, Jenny}, title = {Effects of algae on microbial carbon cycling in freshwaters}, doi = {10.25932/publishup-42222}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422225}, school = {Universit{\"a}t Potsdam}, pages = {90}, year = {2018}, abstract = {Microbial processing of organic matter (OM) in the freshwater biosphere is a key component of global biogeochemical cycles. Freshwaters receive and process valuable amounts of leaf OM from their terrestrial landscape. These terrestrial subsidies provide an essential source of energy and nutrients to the aquatic environment as a function of heterotrophic processing by fungi and bacteria. Particularly in freshwaters with low in-situ primary production from algae (microalgae, cyanobacteria), microbial turnover of leaf OM significantly contributes to the productivity and functioning of freshwater ecosystems and not least their contribution to global carbon cycling. Based on differences in their chemical composition, it is believed that leaf OM is less bioavailable to microbial heterotrophs than OM photosynthetically produced by algae. Especially particulate leaf OM, consisting predominantly of structurally complex and aromatic polymers, is assumed highly resistant to enzymatic breakdown by microbial heterotrophs. However, recent research has demonstrated that OM produced by algae promotes the heterotrophic breakdown of leaf OM in aquatic ecosystems, with profound consequences for the metabolism of leaf carbon (C) within microbial food webs. In my thesis, I aimed at investigating the underlying mechanisms of this so called priming effect of algal OM on the use of leaf C in natural microbial communities, focusing on fungi and bacteria. The works of my thesis underline that algal OM provides highly bioavailable compounds to the microbial community that are quickly assimilated by bacteria (Paper II). The substrate composition of OM pools determines the proportion of fungi and bacteria within the microbial community (Paper I). Thereby, the fraction of algae OM in the aquatic OM pool stimulates the activity and hence contribution of bacterial communities to leaf C turnover by providing an essential energy and nutrient source for the assimilation of the structural complex leaf OM substrate. On the contrary, the assimilation of algal OM remains limited for fungal communities as a function of nutrient competition between fungi and bacteria (Paper I, II). In addition, results provide evidence that environmental conditions determine the strength of interactions between microalgae and heterotrophic bacteria during leaf OM decomposition (Paper I, III). However, the stimulatory effect of algal photoautotrophic activities on leaf C turnover remained significant even under highly dynamic environmental conditions, highlighting their functional role for ecosystem processes (Paper III). The results of my thesis provide insights into the mechanisms by which algae affect the microbial turnover of leaf C in freshwaters. This in turn contributes to a better understanding of the function of algae in freshwater biogeochemical cycles, especially with regard to their interaction with the heterotrophic community.}, language = {en} } @phdthesis{Danckert2018, author = {Danckert, Lena}, title = {Immunscreening Virulenz-adaptierter Expressionsbibliotheken aus einem in vitro Infektionsmodell mit Salmonella Enteritidis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421108}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2018}, abstract = {Die Folgen einer lebensmittelbedingten Erkrankung sind zum Teil gravierend, insbesondere f{\"u}r Kinder und immunsupprimierte Menschen. Hierbei geh{\"o}ren Salmonella und Campylobacter zu den h{\"a}ufigsten Erregern, die verantwortlich f{\"u}r gastrointestinale Erkrankungen in Deutschland sind. Trotz umfassender Maßnahmen der EU zur Pr{\"a}vention und Bek{\"a}mpfung von Salmonellen in Gefl{\"u}gelbest{\"a}nden und der Lebensmittel-Industrie, wird von einem stagnierenden Trend von Infektionszahlen berichtet. Zoonose-Erreger wie Salmonellen k{\"o}nnen {\"u}ber Nutztiere in die Nahrungskette des Menschen gelangen, wodurch sich Infektionsherde schnell ausbreiten k{\"o}nnen. Dabei sind bestehende Pr{\"a}ventionsstrategien f{\"u}r Gefl{\"u}gel vorhanden, die aber nicht auf den Menschen {\"u}bertragbar sind. Folglich sind Diagnostik und Pr{\"a}vention in der Lebensmittelindustrie essentiell. Deshalb besteht ein hoher Bedarf f{\"u}r spezifische, sensitive und zuverl{\"a}ssige Nachweismethoden, die eine Point-of-care Diagnostik gew{\"a}hrleisten. Durch ein wachsendes Verst{\"a}ndnis der wirtsspezifischen Faktoren von S. enterica Serovaren kann die Entwicklung sowohl neuartiger diagnostischer Methoden, als auch neuartiger Therapien und Impfstoffe maßgeblich vorangetrieben werden. Infolgedessen wurde in dieser Arbeit ein infektions{\"a}hnliches in vitro Modell f{\"u}r S. Enteritidis etabliert und darauf basierend eine umfassende Untersuchung zur Identifizierung neuer Zielstrukturen f{\"u}r den Erreger durchgef{\"u}hrt. W{\"a}hrend einer Salmonellen-Infektion ist die erste zellul{\"a}re Barriere im Wirt die Epithelschicht. Dementsprechend wurde eine humane Zelllinie (CaCo 2, Darmepithel) f{\"u}r die Pathogen-Wirt-Studie ausgew{\"a}hlt. Das Salmonellen-Transkriptom und morphologische Eigenschaften der Epithelzellen wurden in verschiedenen Phasen der Salmonellen-Infektion untersucht und mit bereits gut beschriebenen Virulenzfaktoren und Beobachtungen in Bezug gesetzt. Durch dieses Infektionsmodell konnte ein spezifischer Ph{\"a}notyp f{\"u}r die intrazellul{\"a}ren Salmonellen in den Epithelzellen nachgewiesen werden. Zudem wurde aufgezeigt, dass bereits die Kultivierung in Fl{\"u}ssigmedium einen invasionsaktiven Zustand der Salmonellen erzeugt. Allerdings wurde durch die Kokultivierung mit Epithelzellen eine zus{\"a}tzliche Expression relevanter Gene induziert, um eine effiziente Adh{\"a}sion und Transmembran-Transport zu gew{\"a}hrleisten. Letzterer ist charakteristisch f{\"u}r die intrazellul{\"a}re Limitierung von N{\"a}hrstoffen und pr{\"a}gt den infektionsrelevanten Status. Unter Ber{\"u}cksichtigung dieser Faktoren ergab sich ein Ph{\"a}notyp, der eindeutig Mechanismen zur Wirtsadaptation und m{\"o}glicherweise auch Pathogenese aufzeigt. Die intrazellul{\"a}ren Bakterien m{\"u}ssen vom Wirt separiert werden, was ein wesentlicher Schritt f{\"u}r Pathogen-bestimmende Analysen ist. Hierbei wurde mithilfe einer Detergenz-basierten Lyse der eukaryotischen Zellmembran und differentieller Zentrifugation, der eukaryotische Eintrag minimal gehalten. Unter Verwendung der Virulenz-adaptierten Salmonellen wurden Untersuchungen in Hinblick auf die Identifizierung neuer Zielstrukturen f{\"u}r S. Enteritidis durchgef{\"u}hrt. Mithilfe eines immunologischen Screenings wurden neue potentielle Antigene entdeckt. Zu diesem Zweck wurden bakterielle cDNA-basierte Expressionsbibliotheken hergestellt, die durch eine vereinfachte Microarray-Anwendung ein Hochdurchsatzscreening von Proteinen als potentielle Binder erm{\"o}glichen. Folglich konnten neue unbeschriebene Proteine identifiziert werden, die sich durch eine Salmonella-Spezifit{\"a}t oder Membranst{\"a}ndigkeit auszeichnen. Ebenso wurde ein Vergleich der im Screening identifizierten Proteine mit der Regulation der kodierenden Gene im infektions{\"a}hnlichen Modell durchgef{\"u}hrt. Dabei wurde deutlich, dass die H{\"a}ufigkeit von Transkripten einen Einfluss auf die Verf{\"u}gbarkeit in der cDNA-Bibliothek und folglich auch auf die Expressionsbibliothek nimmt. Angesichts eines Ungleichgewichts zwischen der Gesamtzahl protein-kodierender Gene in S. Enteritidis zu m{\"o}glichen Klonen, die w{\"a}hrend des Microarray-Screenings untersucht werden k{\"o}nnen, besteht der Bedarf einer Anreicherung von Proteinen in der Expressionsbibliothek. Das infektions{\"a}hnliche Modell zeigte, dass nicht nur Virulenz-assoziierte, sondern auch Stress- und Metabolismus-relevante Gene hochreguliert werden. Durch die Konstruktion dieser spezifischen cDNA-Bibliotheken ist die Erkennung von charakteristischen molekularen Markern gegeben. Weiterhin wurden anhand der Transkriptomanalyse spezifisch hochregulierte Gene identifiziert, die relevant f{\"u}r das intrazellul{\"a}re {\"U}berleben von S. Enteritidis in humanen Epithelzellen sind. Hiervon wurden drei Gene n{\"a}her untersucht, indem ihr Einfluss im infektions{\"a}hnlichen Modell mittels entsprechender Gen-Knockout-St{\"a}mme analysiert wurde. Dabei wurde f{\"u}r eine dieser Mutanten ein reduziertes Wachstum in der sp{\"a}ten intrazellul{\"a}ren Phase nachgewiesen. Weiterf{\"u}hrende in vitro Analysen sind f{\"u}r die Charakterisierung des Knockout-Stamms notwendig, um den Einsatz als potenzielles Therapeutikum zu verifizieren. Zusammenfassend wurde ein in vitro Infektionsmodell f{\"u}r S. Enteritidis etabliert, wodurch neue Zielstrukturen des Erregers identifiziert wurden. Diese sind f{\"u}r diagnostische oder therapeutische Anwendungen interessant. Das Modell l{\"a}sst sich ebenso f{\"u}r andere intrazellul{\"a}re Pathogene {\"u}bertragen und gew{\"a}hrleistet eine zuverl{\"a}ssige Identifizierung von potentiellen Antigenen.}, language = {de} } @phdthesis{Buehning2018, author = {B{\"u}hning, Martin}, title = {Charakterisierung des Zusammenspiels von FeS-Cluster-Assemblierung, Molybd{\"a}nkofaktor-Biosynthese und tRNA-Thiolierung in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2018}, language = {de} } @phdthesis{Bolius2018, author = {Bolius, Sarah}, title = {Microbial invasions in aquatic systems - strain identity, genetic diversity and timing}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2018}, abstract = {Biological invasions are the dispersal and following establishment of species outside their native habitat. Due to globalisation, connectivity of regions and climate changes the number of invasive species and their successful establishment is rising. The impact of these species is mostly negative, can induce community and habitat alterations, and is one main cause for biodiversity loss. This impact is particularly high and less researched in aquatic systems and microbial organisms and despite the high impact, the knowledge about overall mechanisms and specific factors affecting invasions are not fully understood. In general, the characteristics of the habitat, native community and invader determine the invasiveness. In this thesis, I aimed to provide a better understanding of aquatic invasions focusing on the invader and its traits and identity. This thesis used a set of 12 strains of the invasive cyanobacterium Cylindrospermopsis raciborskii to examine the effect and impact of the invaders' identity and genetic diversity. Further, the effect of timing on the invasion potential and success was determined, because aquatic systems in particular undergo seasonal fluctuations. Most studies revealed a higher invasion success with increasing genetic diversity. Here, the increase of the genetic diversity, by either strain richness or phylogenetic dissimilarity, is not firstly driving the invasion, but the strain-identity. The high variability among the strains in traits important for invasions led to the highly varying strain-specific invasion success. This success was most dependent on nitrogen uptake and efficient resource use. The lower invasion success into communities comprising further N-fixing species indicates C. raciborskii can use this advantage only without the presence of competitive species. The relief of grazing pressure, which is suggested to be more important in aquatic invasions, was only promoting the invasion when unselective and larger consumers were present. High abundances of unselective consumers hampered the invasion success. This indicates a more complex and temporal interplay of competitive and consumptive resistance mechanisms during the invasion process. Further, the fluctuation abundance and presence of competitors (= primary producers) and consumers (= zooplankton) in lakes can open certain 'invasion windows'. Remarkably, the composition of the resident community was also strain-specific affected and altered, independent of a high or low invasion success. Prior, this was only documented on the species level. Further, investigations on the population of invasive strains can reveal more about the invasion patterns and how multiple strain invasions change resident communities. The present dissertation emphasises the importance of invader-addition experiments with a community context and the importance of the strain-level for microbial invasions and in general, e.g. for community assemblies and the outcome of experiments. The strain-specific community changes, also after days, may explain some sudden changes in communities, which have not been explained yet. This and further knowledge may also facilitate earlier and less cost-intensive management to step in, because these species are rarely tracked until they reach a high abundance or bloom, because of their small size. Concluded for C. raciborskii, it shows that this species is no 'generalistic' invader and its invasion success depends more on the competitor presence than grazing pressure. This may explain its, still unknown, invasion pattern, as C. raciborskii is not found in all lakes of a region.}, language = {en} } @phdthesis{Bergholz2018, author = {Bergholz, Kolja}, title = {Trait-based understanding of plant species distributions along environmental gradients}, doi = {10.25932/publishup-42634}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426341}, school = {Universit{\"a}t Potsdam}, pages = {128}, year = {2018}, abstract = {For more than two centuries, plant ecologists have aimed to understand how environmental gradients and biotic interactions shape the distribution and co-occurrence of plant species. In recent years, functional trait-based approaches have been increasingly used to predict patterns of species co-occurrence and species distributions along environmental gradients (trait-environment relationships). Functional traits are measurable properties at the individual level that correlate well with important processes. Thus, they allow us to identify general patterns by synthesizing studies across specific taxonomic compositions, thereby fostering our understanding of the underlying processes of species assembly. However, the importance of specific processes have been shown to be highly dependent on the spatial scale under consideration. In particular, it remains uncertain which mechanisms drive species assembly and allow for plant species coexistence at smaller, more local spatial scales. Furthermore, there is still no consensus on how particular environmental gradients affect the trait composition of plant communities. For example, increasing drought because of climate change is predicted to be a main threat to plant diversity, although it remains unclear which traits of species respond to increasing aridity. Similarly, there is conflicting evidence of how soil fertilization affects the traits related to establishment ability (e.g., seed mass). In this cumulative dissertation, I present three empirical trait-based studies that investigate specific research questions in order to improve our understanding of species distributions along environmental gradients. In the first case study, I analyze how annual species assemble at the local scale and how environmental heterogeneity affects different facets of biodiversity—i.e. taxonomic, functional, and phylogenetic diversity—at different spatial scales. The study was conducted in a semi-arid environment at the transition zone between desert and Mediterranean ecosystems that features a sharp precipitation gradient (Israel). Different null model analyses revealed strong support for environmentally driven species assembly at the local scale, since species with similar traits tended to co-occur and shared high abundances within microsites (trait convergence). A phylogenetic approach, which assumes that closely related species are functionally more similar to each other than distantly related ones, partly supported these results. However, I observed that species abundances within microsites were, surprisingly, more evenly distributed across the phylogenetic tree than expected (phylogenetic overdispersion). Furthermore, I showed that environmental heterogeneity has a positive effect on diversity, which was higher on functional than on taxonomic diversity and increased with spatial scale. The results of this case study indicate that environmental heterogeneity may act as a stabilizing factor to maintain species diversity at local scales, since it influenced species distribution according to their traits and positively influenced diversity. All results were constant along the precipitation gradient. In the second case study (same study system as case study one), I explore the trait responses of two Mediterranean annuals (Geropogon hybridus and Crupina crupinastrum) along a precipitation gradient that is comparable to the maximum changes in precipitation predicted to occur by the end of this century (i.e., -30\%). The heterocarpic G. hybridus showed strong trends in seed traits, suggesting that dispersal ability increased with aridity. By contrast, the homocarpic C. crupinastrum showed only a decrease in plant height as aridity increased, while leaf traits of both species showed no consistent pattern along the precipitation gradient. Furthermore, variance decomposition of traits revealed that most of the trait variation observed in the study system was actually found within populations. I conclude that trait responses towards aridity are highly species-specific and that the amount of precipitation is not the most striking environmental factor at this particular scale. In the third case study, I assess how soil fertilization mediates—directly by increased nutrient addition and indirectly by increased competition—the effect of seed mass on establishment ability. For this experiment, I used 22 species differing in seed mass from dry grasslands in northeastern Germany and analyzed the interacting effects of seed mass with nutrient availability and competition on four key components of seedling establishment: seedling emergence, time of seedling emergence, seedling survival, and seedling growth. (Time of) seedling emergence was not affected by seed mass. However, I observed that the positive effect of seed mass on seedling survival is lowered under conditions of high nutrient availability, whereas the positive effect of seed mass on seedling growth was only reduced by competition. Based on these findings, I developed a conceptual model of how seed mass should change along a soil fertility gradient in order to reconcile conflicting findings from the literature. In this model, seed mass shows a U-shaped pattern along the soil fertility gradient as a result of changing nutrient availability and competition. Overall, the three case studies highlight the role of environmental factors on species distribution and co-occurrence. Moreover, the findings of this thesis indicate that spatial heterogeneity at local scales may act as a stabilizing factor that allows species with different traits to coexist. In the concluding discussion, I critically debate intraspecific trait variability in plant community ecology, the use of phylogenetic relationships and easily measured key functional traits as a proxy for species' niches. Finally, I offer my outlook for the future of functional plant community research.}, language = {en} } @phdthesis{AriasAndres2018, author = {Arias Andr{\´e}s, Mar{\´i}a de Jes{\´u}s}, title = {Microbial gene exchange on microplastic particles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417241}, school = {Universit{\"a}t Potsdam}, pages = {94}, year = {2018}, abstract = {Plastic pollution is ubiquitous on the planet since several millions of tons of plastic waste enter aquatic ecosystems each year. Furthermore, the amount of plastic produced is expected to increase exponentially shortly. The heterogeneity of materials, additives and physical characteristics of plastics are typical of these emerging contaminants and affect their environmental fate in marine and freshwaters. Consequently, plastics can be found in the water column, sediments or littoral habitats of all aquatic ecosystems. Most of this plastic debris will fragment as a product of physical, chemical and biological forces, producing particles of small size. These particles (< 5mm) are known as "microplastics" (MP). Given their high surface-to-volume ratio, MP stimulate biofouling and the formation of biofilms in aquatic systems. As a result of their unique structure and composition, the microbial communities in MP biofilms are referred to as the "Plastisphere." While there is increasing data regarding the distinctive composition and structure of the microbial communities that form part of the plastisphere, scarce information exists regarding the activity of microorganisms in MP biofilms. This surface-attached lifestyle is often associated with the increase in horizontal gene transfer (HGT) among bacteria. Therefore, this type of microbial activity represents a relevant function worth to be analyzed in MP biofilms. The horizontal exchange of mobile genetic elements (MGEs) is an essential feature of bacteria. It accounts for the rapid evolution of these prokaryotes and their adaptation to a wide variety of environments. The process of HGT is also crucial for spreading antibiotic resistance and for the evolution of pathogens, as many MGEs are known to contain antibiotic resistance genes (ARGs) and genetic determinants of pathogenicity. In general, the research presented in this Ph.D. thesis focuses on the analysis of HGT and heterotrophic activity in MP biofilms in aquatic ecosystems. The primary objective was to analyze the potential of gene exchange between MP bacterial communities vs. that of the surrounding water, including bacteria from natural aggregates. Moreover, the thesis addressed the potential of MP biofilms for the proliferation of biohazardous bacteria and MGEs from wastewater treatment plants (WWTPs) and associated with antibiotic resistance. Finally, it seeks to prove if the physiological profile of MP biofilms under different limnological conditions is divergent from that of the water communities. Accordingly, the thesis is composed of three independent studies published in peer-reviewed journals. The two laboratory studies were performed using both model and environmental microbial communities. In the field experiment, natural communities from freshwater ecosystems were examined. In Chapter I, the inflow of treated wastewater into a temperate lake was simulated with a concentration gradient of MP particles. The effects of MP on the microbial community structure and the occurrence of integrase 1 (int 1) were followed. The int 1 is a marker associated with mobile genetic elements and known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. During the experiment, the abundance of int1 increased in the plastisphere with increasing MP particle concentration, but not in the surrounding water. In addition, the microbial community on MP was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of standard indicators of microbial anthropogenic pollution in natural waters. In Chapter II, the experiments aimed to compare the permissiveness of aquatic bacteria towards model antibiotic resistance plasmid pKJK5, between communities that form biofilms on MP vs. those that are free-living. The frequency of plasmid transfer in bacteria associated with MP was higher when compared to bacteria that are free-living or in natural aggregates. Moreover, comparison increased gene exchange occurred in a broad range of phylogenetically-diverse bacteria. The results indicate a different activity of HGT in MP biofilms, which could affect the ecology of aquatic microbial communities on a global scale and the spread of antibiotic resistance. Finally, in Chapter III, physiological measurements were performed to assess whether microorganisms on MP had a different functional diversity from those in water. General heterotrophic activity such as oxygen consumption was compared in microcosm assays with and without MP, while diversity and richness of heterotrophic activities were calculated by using Biolog® EcoPlates. Three lakes with different nutrient statuses presented differences in MP-associated biomass build up. Functional diversity profiles of MP biofilms in all lakes differed from those of the communities in the surrounding water, but only in the oligo-mesotrophic lake MP biofilms had a higher functional richness compared to the ambient water. The results support that MP surfaces act as new niches for aquatic microorganisms and can affect global carbon dynamics of pelagic environments. Overall, the experimental works presented in Chapters I and II support a scenario where MP pollution affects HGT dynamics among aquatic bacteria. Among the consequences of this alteration is an increase in the mobilization and transfer efficiency of ARGs. Moreover, it supposes that changes in HGT can affect the evolution of bacteria and the processing of organic matter, leading to different catabolic profiles such as demonstrated in Chapter III. The results are discussed in the context of the fate and magnitude of plastic pollution and the importance of HGT for bacterial evolution and the microbial loop, i.e., at the base of aquatic food webs. The thesis supports a relevant role of MP biofilm communities for the changes observed in the aquatic microbiome as a product of intense human intervention.}, language = {en} } @phdthesis{Alhajturki2018, author = {Alhajturki, Dema}, title = {Characterization of altered inflorescence architecture in Arabidopsis thaliana BG-5 x Kro-0 hybrid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420934}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2018}, abstract = {A reciprocal cross between two A. thaliana accessions, Kro-0 (Krotzenburg, Germany) and BG-5 (Seattle, USA), displays purple rosette leaves and dwarf bushy phenotype in F1 hybrids when grown at 17 °C and a parental-like phenotype when grown at 21 °C. This F1 temperature-dependent-dwarf-bushy phenotype is characterized by reduced growth of the primary stem together with an increased number of branches. The reduced stem growth was the strongest at the first internode. In addition, we found that a temperature switch from 21 °C to 17 °C induced the phenotype only before the formation of the first internode of the stem. Similarly, the F1 dwarf-bushy phenotype could not be reversed when plants were shifted from 17 °C to 21 °C after the first internode was formed. Metabolic analysis showed that the F1 phenotype was associated with a significant upregulation of anthocyanin(s), kaempferol(s), salicylic acid, jasmonic acid and abscisic acid. As it has been previously shown that the dwarf-bushy phenotype is linked to two loci, one on chromosome 2 from Kro-0 and one on chromosome 3 from BG-5, an artificial micro-RNA approach was used to investigate the necessary genes on these intervals. From the results obtained, it was found that two genes, AT2G14120 that encodes for a DYNAMIN RELATED PROTEIN3B and AT2G14100 that encodes a member of the Cytochrome P450 family protein CYP705A13, were necessary for the appearance of the F1 phenotype on chromosome 2. It was also discovered that AT3G61035 that encodes for another cytochrome P450 family protein CYP705A13 and AT3G60840 that encodes for a MICROTUBULE-ASSOCIATED PROTEIN65-4 on chromosome 3 were both necessary for the induction of the F1 phenotype. To prove the causality of these genes, genomic constructs of the Kro-0 candidate genes on chromosome 2 were transferred to BG-5 and genomic constructs of the chromosome 3 candidate genes from BG-5 were transferred to Kro-0. The T1 lines showed that these genes are not sufficient alone to induce the phenotype. In addition to the F1 phenotype, more severe phenotypes were observed in the F2 generations that were grouped into five different phenotypic classes. Whilst seed yield was comparable between F1 hybrids and parental lines, three phenotypic classes in the F2 generation exhibited hybrid breakdown in the form of reproductive failure. This F2 hybrid breakdown was less sensitive to temperature and showed a dose-dependent effect of the loci involved in F1 phenotype. The severest class of hybrid breakdown phenotypes was observed only in the population of backcross with the parent Kro-0, which indicates a stronger contribution of the BG-5 allele when compared to the Kro-0 allele on the hybrid breakdown phenotypes. Overall, the findings of my thesis provide a further understanding of the genetic and metabolic factors underlying altered shoot architecture in hybrid dysfunction.}, language = {en} }