@article{DieterElsenbeerTurner2010, author = {Dieter, Daniela and Elsenbeer, Helmut and Turner, Benjamin L.}, title = {Phosphorus fractionation in lowland tropical rainforest soils in central Panama}, issn = {0341-8162}, doi = {10.1016/j.catena.2010.05.010}, year = {2010}, abstract = {Phosphorus availability is commonly assumed to limit productivity in lowland tropical rainforests, yet there is relatively little information on the chemical forms of soil phosphorus in such ecosystems. We used the Hedley sequential fractionation scheme to assess phosphorus chemistry in five soils supporting tropical rainforest on Barro Colorado Island, Republic of Panama. The soils represented a range of orders (Inceptisols, Alfisols, and Oxisols) formed on contrasting geological substrates and topography, but under uniform climate and vegetation. Total phosphorus in surface horizons ranged between 315 and 1114 mg P kg(-1), being lowest on a soil derived from marine sediments and highest on soils derived from andesite. The majority of the phosphorus occurred in recalcitrant forms, although between 14\% and 39\% occurred as organic phosphorus. Readily-available phosphate, as extracted by anion-exchange membranes, occurred in small concentrations (4-13 mg P kg(-1)), although labile phosphorus, defined as phosphate extracted by anion-exchange membrane plus inorganic and organic phosphorus extracted by 0.5 M NaHCO3, accounted for between 4.7\% and 11.4\% of the total soil phosphorus. Our results indicate a strong control of geology and topography on soil phosphorus in tropical rainforests, which may have important implications for understanding the diversity and distribution of plant species in such ecosystems. Further, some of the most common soils on Barro Colorado Island, including those on the 50 ha forest dynamics plot, are rich in phosphorus despite their relatively advanced stage of pedogenesis.}, language = {en} } @article{EhretZehe2010, author = {Ehret, Uwe and Zehe, Erwin}, title = {Series distance : an intuitive metric for hydrograph comparison}, issn = {1812-2108}, doi = {10.5194/hessd-7-8387-2010}, year = {2010}, abstract = {Applying metrics for hydrograph comparison is a central task in hydrological modelling, used both in model calibration and the evaluation of simulations or forecasts. Motivated by the shortcomings of standard objective metrics such as the Root Mean Square Error or the Mean Peak Time Error and the advantages of visual inspection as a powerful tool for simultaneous, case-specific and multi-criteria (yet subjective) evaluation, we propose a new objective metric termed Series Distance, which is in close accordance with visual evaluation. The Series Distance is an event-based method and consists of three parts, namely a Threat Score which evaluates overall agreement of event occurrence, and the overall distance of matching observed and simulated events with respect to amplitude and timing. The novelty of the latter two is the way in which matching point pairs on the observed and simulated hydrographs are identified, namely by the same relative position in matching segments (rise or recession) of matching events. Thus, amplitude and timing errors are calculated simultaneously but separately, from point pairs that also match visually, considering complete events rather than only individual points (which is for example the case with metrics related to Peak Time Errors). After presenting the Series Distance theory, we discuss its properties and compare it to those of standard metrics and visual inspection, both at the example of simple, artificial hydrographs and an ensemble of realistic forecasts. The results suggest that the Series Distance compares and evaluates hydrographs in a way comparable to visual inspection, but in an objective, reproducible way.}, language = {en} } @article{EndrunOhrnbergerSavvaidis2010, author = {Endrun, Brigitte and Ohrnberger, Matthias and Savvaidis, Alexandros}, title = {On the repeatability and consistency of three-component ambient vibration array measurements}, issn = {1570-761X}, doi = {10.1007/s10518-009-9159-9}, year = {2010}, abstract = {Ambient vibration measurements with small, temporary arrays that produce estimates of surface wave dispersion have become increasingly popular as a low-cost, non-invasive tool for site characterisation. An important requirement for these measurements to be meaningful, however, is the temporal consistency and repeatability of the resulting dispersion and spatial autocorrelation curve estimates. Data acquired within several European research projects (NERIES task JRA4, SESAME, and other multinational experiments) offer the chance to investigate the variability of the derived data products. The dataset analysed here consists of repeated array measurements, with several years of time elapsed between them. The measurements were conducted by different groups in different seasons, using different instrumentations and array layouts, at six sites in Greece and Italy. Ambient vibration amplitude spectra and locations of dominant sources vary between the two measurements at each location. Still, analysis indicates that this does not influence the derived dispersion information, which is stable in time and neither influenced by the instrumentation nor the analyst. The frequency range over which the dispersion curves and spatial autocorrelation curves can be reliably estimated depends on the array dimensions (minimum and maximum aperture) used in the specific deployment, though, and may accordingly vary between the repeated experiments. The relative contribution of Rayleigh and Love waves to the wavefield can likewise change between repeated measurements. The observed relative contribution of Rayleigh waves is generally at or below 50\%, with especially low values for the rural sites. Besides, the visibility of higher modes depends on the noise wavefield conditions. The similarity of the dispersion and autocorrelation curves measured at each site indicates that the curves are stable, mainly determined by the sub-surface structure, and can thus be used to derive velocity information with depth. Differences between velocity models for the same site derived from independently determined dispersion and autocorrelation curves-as observed in other studies-are consequently not adequately explained by uncertainties in the measurement part.}, language = {en} } @article{FariasVargasTassaraetal.2010, author = {Far{\"i}as, Marcelo and Vargas, Gabriel and Tassara, Andr{\´e}s and Carretier, S{\´e}bastien and Baize, St{\´e}phane and Melnick, Daniel and Bataille, Klaus}, title = {Land-level changes produced by the M-w 8.8 2010 Chilean earthquake}, issn = {0036-8075}, doi = {10.1126/science.1192094}, year = {2010}, abstract = {We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an ~500-kilometers- long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, from subsided regions. A simple elastic dislocation model fits these observations well; model parameters give a similar seismic moment to seismological estimates and suggest that most of the plate convergence since the 1835 great earthquake was elastically stored and then released during this event.}, language = {en} } @article{ForbrichKutzbachHormannetal.2010, author = {Forbrich, Inke and Kutzbach, Lars and Hormann, Annabell and Wilmking, Martin}, title = {A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands}, issn = {0038-0717}, doi = {10.1016/j.soilbio.2009.12.004}, year = {2010}, abstract = {The closed-chamber method is the most common approach to determine CH4 fluxes in peatlands. The concentration change in the chamber is monitored over time, and the flux is usually calculated by the slope of a linear regression function. Theoretically, the gas exchange cannot be constant over time but has to decrease, when the concentration gradient between chamber headspace and soil air decreases. In this study, we test whether we can detect this non- linearity in the concentration change during the chamber closure with six air samples. We expect generally a low concentration gradient on dry sites (hummocks) and thus the occurrence of exponential concentration changes in the chamber due to a quick equilibrium of gas concentrations between peat and chamber headspace. On wet (flarks) and sedge- covered sites (lawns), we expect a high gradient and near-linear concentration changes in the chamber. To evaluate these model assumptions, we calculate both linear and exponential regressions for a test data set (n = 597) from a Finnish mire. We use the Akaike Information Criterion with small sample second order bias correction to select the best-fitted model. 13.6\%, 19.2\% and 9.8\% of measurements on hummocks, lawns and flarks, respectively, were best fitted with an exponential regression model. A flux estimation derived from the slope of the exponential function at the beginning of the chamber closure can be significantly higher than using the slope of the linear regression function. Non-linear concentration-overtime curves occurred mostly during periods of changing water table. This could be due to either natural processes or chamber artefacts, e.g. initial pressure fluctuations during chamber deployment. To be able to exclude either natural processes or artefacts as cause of non-linearity, further information, e.g. CH4 concentration profile measurements in the peat, would be needed. If this is not available, the range of uncertainty can be substantial. We suggest to use the range between the slopes of the exponential regression at the beginning and at the end of the closure time as an estimate of the overall uncertainty.}, language = {en} } @article{FoersterFoersterOberhaenslietal.2010, author = {F{\"o}rster, Hans-J{\"u}rgen and F{\"o}rster, Andrea and Oberh{\"a}nsli, Roland and Stromeyer, Dietrich}, title = {Lithospheric composition and thermal structure of the Arabian Shield in Jordan}, issn = {0040-1951}, doi = {10.1016/j.tecto.2008.11.014}, year = {2010}, abstract = {In this paper, a unique set of samples from the uppermost crust down to the lithospheric mantle of Jordan is analyzed for composition and petrophysical properties (density. thermal conductivity, radiogenic heat production) These data, covering a vertical section of almost 65 km. are used in conjunction with surface heat flow to generate a detailed and comprehensive lithospheric thermal model that reflects the conditions of the Arabian Shield (AS) prior to the post- Oligocene onset of lithosphere thinning and Voluminous basaltic volcanism. The pre-Miocene model geotherms, based on conductive surface heat flows of 55 and 60 mW m(-2). (a) meet the range of lithosphere-asthenosphere boundary depths of 110-160 km known from seismology, (b) conform to results of thermomechanical models on the on.-in of the Dead Sea basin that started in Miocene time. and (c) are consistent with typical xenolith-derived geotherms for terranes of similar age and lithospheric thickness. Moho temperatures (at depths between 35 and 40 km) of the AS in pre-Miocene times were most likely in the order of 530-650 degrees C, with mantle heat flows averaging between 24 and 29 mW m(-2) Results contradict former views of the late Proterozoic/early Cambrian-stabilized AS being an anomalously cold terrane A "cold" thermal structure inferred from previously measured low surface heat flows (generally <= 45 mW m(-2)) is inconsistent with the thickness, composition, and petrophysical properties of the stable lithosphere of the shield.}, language = {en} } @article{GerkeKoszinskiKalettkaetal.2010, author = {Gerke, Horst H. and Koszinski, Sylvia and Kalettka, Thomas and Sommer, Michael}, title = {Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2009.12.047}, year = {2010}, abstract = {The hummocky post-glacial soil landscapes with kettle holes as internal drainage systems are characterized by ponds that trap lateral fluxes in topographic depressions. A quantitative description is mostly limited by the unknown complexity of hydraulically relevant soil and sediment structures. This paper is focussing on a structure-based approach to identify relevant field-scale flow and transport processes. Illustrative examples demonstrate extreme variations in water table fluctuation for adjoining kettle holes. Explanations require a pedohydrologic concept of the arable soil landscape. Identification of structures is based on geophysical methods and soil hydraulic measurements. Electrical resistivity imaging yields 0.5 m-scale spatial structures that correspond with soil texture distributions. Electromagnetic induction provides larger-scale field maps that reflect major soil and sediment features. Results of both methods correspond within the limits of the different spatial resolutions. With geophysical exploration methods, colluvial areas with textural differences between upper and deeper soil layers, coarse-textured sediment lenses, and stony colluvial regions around kettle holes are identified as potentially relevant flow structures. The colluvial fringe around the pond seems to be a sensitive area with important lateral exchange fluxes. Tensiometer measurements perpendicular to this boundary indicate hydraulic gradients directed from the pond towards the partially saturated soil. The localized infiltration of trapped water in kettle holes can control large fractions of ground water recharge and may have implications for the fate of agricultural chemicals in post-glacial landscapes. While surface and subsurface hydraulic structures may be inferred using minimal-invasive techniques, better understanding of processes and properties governing lateral exchange fluxes between pond and surrounding soil are required.}, language = {en} } @article{GraeffZeheSchlaegeretal.2010, author = {Gr{\"a}ff, Thomas and Zehe, Erwin and Schlaeger, Stefan and Morgner, Markus and Bauer, Andreas and Becker, Rolf and Creutzfeldt, Benjamin and Bronstert, Axel}, title = {A quality assessment of Spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments}, issn = {1027-5606}, doi = {10.5194/hess-14-1007-2010}, year = {2010}, abstract = {Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogeneous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile, but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture, but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16\% were in good agreement with independent measurements.}, language = {en} } @article{GraeffZeheSchlaegeretal.2010, author = {Gr{\"a}ff, Thomas and Zehe, Erwin and Schl{\"a}ger, Stefan and Morgner, Markus and Bauer, Andreas and Becker, Rolf and Creutzfeldt, Benjamin and Bronstert, Axel}, title = {A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments}, issn = {1812-2108}, doi = {10.5194/hessd-7-269-2010}, year = {2010}, abstract = {Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogonous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16\% were in good agreement with independent measurements.}, language = {en} } @article{HandySchmidBousquetetal.2010, author = {Handy, Mark R. and Schmid, Stefan M. and Bousquet, Romain and Kissling, Eduard and Bernoulli, Daniel}, title = {Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2010.06.002}, year = {2010}, abstract = {A new reconstruction of Alpine Tethys combines plate-kinematic modelling with a wealth of geological data and seismic tomography to shed light on its evolution, from sea-floor spreading through subduction to collision in the Alps. Unlike previous models, which relate the fate of Alpine Tethys solely to relative motions of Africa, Iberia and Europe during opening of the Atlantic, our reconstruction additionally invokes independent microplates whose motions are constrained primarily by the geological record. The motions of these microplates (Adria, Iberia, Alcapia, Alkapecia, and Tiszia) relative to both Africa and Europe during Late Cretaceous to Cenozoic time involved the subduction of remnant Tethyan basins during the following three stages that are characterized by contrasting plate motions and driving forces: (1) 131-84 Ma intra-oceanic subduction of the Ligurian part of Alpine Tethys attached to Iberia coincided with Eo-alpine orogenesis in the Alcapia microplate, north of Africa. These events were triggered primarily by foundering of the older (170-131 Ma) Neotethyan subduction slab along the NE margin of the composite African-Adriatic plate; subduction was linked by a sinistral transform system to E-W opening of the Valais part of Alpine Tethys; (2) 84-35 Ma subduction of primarily the Piemont and Valais parts of Alpine Tethys which were then attached to the European plate beneath the overriding African and later Adriatic plates. NW translation of Adria with respect to Africa was accommodated primarily by slow widening of the Ionian Sea; (3) 35 Ma-Recent rollback subduction of the Ligurian part of Alpine Tethys coincided with Western Alpine orogenesis and involved the formation of the Gibraltar and Calabrian arcs. Rapid subduction and arc formation were driven primarily by the pull of the gravitationally unstable, retreating Adriatic and African slabs during slow convergence of Africa and Europe. The upper European-Iberian plate stretched to accommodate this slab retreat in a very mobile fashion, while the continental core of the Adriatic microplate acted as a rigid indenter within the Alpine collisional zone. The subducted lithosphere in this reconstruction can be correlated with slab material imaged by seismic tomography beneath the Alps and Apennines, as well as beneath parts of the Pannonian Basin, the Adriatic Sea, the Ligurian Sea, and the Western Mediterranean. The predicted amount of subducted lithosphere exceeds the estimated volume of slab material residing at depth by some 10-30\%, indicating that parts of slabs may be superposed within the mantle transition zone and/or that some of this subducted lithosphere became seismically transparent.}, language = {en} }