@article{BaerFegerFajoletal.2018, author = {B{\"a}r, Ludmilla and Feger, Martina and Fajol, Abul and Klotz, Lars-Oliver and Zeng, Shufei and Lang, Florian and Hocher, Berthold and F{\"o}ller, Michael}, title = {Insulin suppresses the production of fibroblast growth factor 23 (FGF23)}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {22}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1800160115}, pages = {5804 -- 5809}, year = {2018}, abstract = {Fibroblast growth factor 23 (FGF23) is produced by bone cells and regulates renal phosphate and vitamin D metabolism, as well as causing left ventricular hypertrophy. FGF23 deficiency results in rapid aging, whereas high plasma FGF23 levels are found in several disorders, including kidney or cardiovascular diseases. Regulators of FGF23 production include parathyroid hormone (PTH), calcitriol, dietary phosphate, and inflammation. We report that insulin and insulin-like growth factor 1 (IGF1) are negative regulators of FGF23 production. In UMR106 osteoblast-like cells, insulin and IGF1 down-regulated FGF23 production by inhibiting the transcription factor forkhead box protein O1 (FOXO1) through phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt signaling. Insulin deficiency caused a surge in the serum FGF23 concentration in mice, which was reversed by administration of insulin. In women, a highly significant negative correlation between FGF23 plasma concentration and increase in plasma insulin level following an oral glucose load was found. Our results provide strong evidence that insulin/IGF1dependent PI3K/PKB/Akt/FOXO1 signaling is a powerful suppressor of FGF23 production in vitro as well as in mice and in humans.}, language = {en} } @misc{BeaumontWarringtonCavadinoetal.2017, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-M{\o}ller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, {\O}yvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Nj{\o}lstad, Pa ̊l R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Ja ̈rvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F.A. and S{\o}rensen, Thorkild I.A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hyppo ̈nen, Elina and Lowe, William L. , Jr and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {628}, issn = {1866-8372}, doi = {10.25932/publishup-42310}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423100}, pages = {15}, year = {2017}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 {\^A} 10 {\`A}8 . In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @article{BeaumontWarringtonCavadinoetal.2018, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-Moller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, Oyvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Njolstad, Pal R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Jarvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F. A. and Sorensen, Thorkild I. A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hypponen, Elina and Lowe, William L. and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Human molecular genetics}, volume = {27}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddx429}, pages = {742 -- 756}, year = {2018}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P< 5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @misc{AlterOttvonWebskyetal.2011, author = {Alter, Markus L. and Ott, Ina and von Websky, Karoline and Tsuprykov, Oleg and Sharkovska, Yuliya and Krause-Relle, Katharina and Raila, Jens and Henze, Andrea and Kretschmer, Axel and Stasch, Johannes-Peter and Hocher, Berthold}, title = {Additional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for the treatment of diabetic nephropathy resistant to ARB treatment alone}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {855}, issn = {1866-8372}, doi = {10.25932/publishup-42825}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428250}, pages = {4}, year = {2011}, abstract = {Background Riociguat is the first of a new class of drugs, the soluble guanylate cyclase (sGC) stimulators. Riociguat has a dual mode of action: it sensitizes sGC to the body's own NO and can also increase sGC activity in the absence of NO. The NO-sGC-pathway is impaired in many cardiovascular diseases such as heart failure, pulmonary hypertension and diabetic nephropathy (DN). DN leads to high cardiovascular morbidity and mortality. There is still a high unmet medical need. The urinary albumin excretion rate is a predictive biomarker for these clinical events. Therefore, we investigated the effect of riociguat, alone and in combination with the angiotensin II receptor antagonist (ARB) telmisartan on the progression of DN in diabetic eNOS knock out mice, a new model closely resembling human pathology. Methods Seventy-six male eNOS knockout C57BL/6J mice were divided into 4 groups after receiving intraperitoneal high-dose streptozotocin: telmisartan (1 mg/kg), riociguat (3 mg/kg), riociguat+telmisartan (3 and 1 mg/kg), and vehicle. Fourteen mice were used as non-diabetic controls. After 12 weeks, urine and blood were obtained and blood pressure measured. Glucose concentrations were highly increased and similar in all diabetic groups. Results Riociguat, alone (105.2 ± 2.5 mmHg; mean±SEM; n = 14) and in combination with telmisartan (105.0 ± 3.2 mmHg; n = 12), significantly reduced blood pressure versus diabetic controls (117.1 ± 2.2 mmHg; n = 14; p = 0.002 and p = 0.004, respectively), whereas telmisartan alone (111.2 ± 2.6 mmHg) showed a modest blood pressure lowering trend (p = 0.071; n = 14). The effects of single treatment with either riociguat (97.1 ± 15.7 µg/d; n = 13) or telmisartan (97.8 ± 26.4 µg/d; n = 14) did not significantly lower albumin excretion on its own (p = 0.067 and p = 0.101, respectively). However, the combined treatment led to significantly lower urinary albumin excretion (47.3 ± 9.6 µg/d; n = 12) compared to diabetic controls (170.8 ± 34.2 µg/d; n = 13; p = 0.004), and reached levels similar to non-diabetic controls (31.4 ± 10.1 µg/d, n = 12). Conclusion Riociguat significantly reduced urinary albumin excretion in diabetic eNOS knock out mice that were refractory to treatment with ARB's alone. Patients with diabetic nephropathy refractory to treatment with ARB's have the worst prognosis among all patients with diabetic nephropathy. Our data indicate that additional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for patients with diabetic nephropathy resistant to ARB treatment.}, language = {en} } @article{AlterOttvonWebskyetal.2012, author = {Alter, Markus L. and Ott, Ina M. and von Websky, Karoline and Tsuprykov, Oleg and Sharkovska, Yuliya and Krause-Relle, Katharina and Raila, Jens and Henze, Andrea and Klein, Thomas and Hocher, Berthold}, title = {DPP-4 Inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {36}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000341487}, pages = {119 -- 130}, year = {2012}, abstract = {Background: The need for an improved treatment for diabetic nephropathy is greatest in patients who do not adequately respond to angiotensin II receptor blockers (ARBs). This study investigated the effect of the novel dipeptidyl peptidase-4 inhibitor linagliptin alone and in combination with the ARB telmisartan on the progression of diabetic nephropathy in diabetic endothelial nitric oxide synthase (eNOS) knockout mice. Methods: Sixty male eNOS knockout C57BL/6J mice were divided into four groups after receiving intraperitoneal high-dose streptozotocin: telmisartan (1 mg/kg), linagliptin (3 mg/kg), linagliptin + telmisartan (3 mg/kg + 1 mg/kg) and vehicle. Fourteen mice were used as non-diabetic controls. Results: After 12 weeks, urine and blood were obtained and blood pressure measured. Glucose concentrations were increased and similar in all diabetic groups. Telmisartan alone reduced systolic blood pressure by 5.9 mmHg versus diabetic controls (111.2 +/- 2.3 mmHg vs 117.1 +/- 2.2 mmHg; mean +/- SEM; P = 0.071). Combined treatment significantly reduced albuminuria compared with diabetic controls (71.7 +/- 15.3 mu g/24 h vs 170.8 +/- 34.2 mu g/24 h; P = 0.017), whereas the effects of single treatment with either telmisartan (97.8 +/- 26.4 mu g/24 h) or linagliptin (120.8 +/- 37.7 mu g/24 h) were not statistically significant. DPP-4 inhibition, alone and in combination, led to significantly lower plasma osteopontin levels compared with telmisartan alone. Histological analysis revealed reduced glomerulosclerosis after Linagliptin alone and in combination with telmisartan in comparison to non treated diabetic animals (p < 0.01 and p < 0.05). Kidney malonaldehyde immune-reactivity, a marker of oxidative stress, was significantly lower in animals treated with linagliptin. Conclusions: DPP-4 inhibition on top of ARB treatment significantly reduced urinary albumin excretion and oxidative stress in diabetic eNOS knockout mice. Linagliptin on top of an angiotensin II receptor blocker may offer a new therapeutic approach for patients with diabetic nephropathy.}, language = {en} } @article{AlterKretschmerVonWebskyetal.2012, author = {Alter, Markus L. and Kretschmer, Axel and Von Websky, Karoline and Tsuprykov, Oleg and Reichetzeder, Christoph and Simon, Alexandra and Stasch, Johannes-Peter and Hocher, Berthold}, title = {Early urinary and plasma biomarkers for experimental diabetic Nephropathy}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {7-8}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2011.111010}, pages = {659 -- 671}, year = {2012}, abstract = {Background: As the prevalence of diabetes rises, its complications such as diabetic nephropathy affect an increaseing number of patients. Consequently, the need for biomarkers in rodent models which reflect the stage and course of diabetic nephropathy is high. This article focuses on Heart-type fatty acid binding protein (H-FABP), osteopontin (OPN), nephrin, and Neutrophil gelatinase-associated lipocalin (NGAL) in urine, and kidney injury molecule (KIM)-1, clusterin, and tissue inhibitior of metalloproteinases (TIMP) 1 in plasma in uni-nephrectomized rats with streptocotozin-induced type 1 diabetes mellitus, a common animal model to explore renal impairment in the setting of diabetes mellitus. Methods: 23 male Wistar rats were uni-nephrectomized and subsequently divided into two study groups. The diabetic group received streptozotocin (STZ) via tail-vein injection, the non-diabetic group received citrate buffer without STZ. Subsequently, blood glucose, body weight, and blood pressure were checked regularly. After 18 weeks, animals were placed in metabolic cages, blood and urine obtained and subsequently organs were harvested after sacrifice. Results: Blood glucose levels were highly increased in diabetic animals throughout the experiment, whereas systolic blood pressure did not differ between the study groups. At study end, classical biomarkers such as urinary albumin and protein and plasma cystatin c were only slightly but not significantly different between groups indicating a very early disease state. In contrast, urinary excretion of H-FABP, OPN, nephrin, and NGAL were highly increased in diabetic animals with a highly significant p-value (p<0.01 each) compared to non-diabetic animals. In plasma, differences were found for calbindin, KIM-1, clusterin, TIMP-1, and OPN. These findings were confirmed by means of the area under the receiver operating characteristic curve (ROC-AUC) analysis. Conclusions: In summary, our study revealed elevated levels of new plasma and urinary biomarkers (urinary osteopontin, urinary nephrin, urinary NGAL, urinary H-FABP, plasma KIM-1, plasma TIMP-1) in uni-nephrectomized diabetic rats, an established rat model of diabetic nephropathy. These biomarkers appeared even before the classical biomarkers of diabetic nephropathy such as albuminuria and urinary protein excretion. The new biomarkers might offer advantage to urinary albumin and plasma cystatin c with respect to early detection.}, language = {en} }