@article{HeinzelRiemerSchulteetal.2014, author = {Heinzel, Stephan and Riemer, Thomas G. and Schulte, Stefanie and Onken, Johanna and Heinz, Andreas and Rapp, Michael A.}, title = {Catechol-O-methyltransferase (COMT) genotype affects age-related changes in plasticity in working memory: a pilot study}, series = {BioMed research international}, journal = {BioMed research international}, publisher = {Hindawi Publishing Corp.}, address = {New York}, issn = {2314-6133}, doi = {10.1155/2014/414351}, pages = {7}, year = {2014}, abstract = {Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24-30 years) and 25 older (aged 60-75 years) healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P < .001), which was larger in younger as compared to older adults (P < .001). Age-related differences were qualified by an interaction with COMT genotype (P < .001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.}, language = {en} } @article{ZaytsevaKorsakovaGurovichetal.2014, author = {Zaytseva, Yuliya and Korsakova, Natalya and Gurovich, Isaac Ya and Heinz, Andreas and Rapp, Michael A.}, title = {Luria revisited: Complex motor phenomena in first episode schizophrenia and schizophrenia spectrum disorders}, series = {Psychiatry research : the official publication of the International Society for Neuroimaging in Psychiatry}, volume = {220}, journal = {Psychiatry research : the official publication of the International Society for Neuroimaging in Psychiatry}, number = {1-2}, publisher = {Elsevier}, address = {Clare}, issn = {0165-1781}, doi = {10.1016/j.psychres.2014.08.009}, pages = {145 -- 151}, year = {2014}, language = {en} } @article{AttermeyerHornickKayleretal.2014, author = {Attermeyer, Katrin and Hornick, T. and Kayler, Zachary and Bahr, A. and Zwirnmann, E. and Grossart, Hans-Peter and Premke, K.}, title = {Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition}, series = {Biogeosciences}, volume = {11}, journal = {Biogeosciences}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-11-1479-2014}, pages = {1479 -- 1489}, year = {2014}, abstract = {Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (C-13-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low-and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50\%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68\% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover.}, language = {en} }