@article{HeydenreichPoleschnerSchilde1996, author = {Heydenreich, Matthias and Poleschner, Helmut and Schilde, Uwe}, title = {Fluoroselenenylation of Acetylenes with Xenon Difluoride-Diorganyl Diselenides : synthesis and structure elucidation of functionalized Vicinal (E)-Fluoro(organylseleno)olefins}, year = {1996}, language = {en} } @article{SchildePoleschner1996, author = {Schilde, Uwe and Poleschner, Helmut}, title = {The first structure of a vicinal (E)-Fluoroselenoolefin: (E)-(5-Fluoro-4-octen-4-yl)dimethylselenonium Picrate}, year = {1996}, language = {en} } @article{SchildeMicklerUhlemann1997, author = {Schilde, Uwe and Mickler, Wulfhard and Uhlemann, Erhard}, title = {Crystal structure of bis(1-phenyl-5-cyclohexyl-pentane-1,3-dionato-copper(II)}, issn = {0044-2968}, year = {1997}, language = {en} } @article{BenassiBregullaFriedrichetal.1998, author = {Benassi, Rois and Bregulla, Antje and Friedrich, Alwin and Henning, Dietrich and Heydenreich, Matthias and Mickler, Wulfhard and Kleinpeter, Erich and Kempter, Gerhard and Schilde, Uwe and Taddei, F.}, title = {NMR spectroscopic and theoretical structural study of 5-exo-methylene-substituted hydantoins}, year = {1998}, language = {en} } @article{PoleschnerHeydenreichSchilde2000, author = {Poleschner, Helmut and Heydenreich, Matthias and Schilde, Uwe}, title = {13C, 19F and 77Se NMR study of vicinal (E)-fluoro(organylseleno)olefins and [(E)- fluoroalkenyl]diorganylselenonium salts}, year = {2000}, abstract = {Selenides of the type R1Se-EMe3 (E = Si, Ge, Sn, Pb) react with xenon difluoride by cleavage of the Se-E bond to yield the R1Se-F intermediate and the fluorides Me3E-F, whereas the Se-C bond in PhSe-tBu (E = C) is stable against XeF2. The presence of R1Se-F intermediates is confirmed by addition to acetylenes (4-octyne, 3-hexyne). Thus, the fluoroselenenylation of acetylenes gives fluoro(organylseleno)olefins in preparative yields. In the cases of E = Si, Ge, Sn, and Pb, aryl and n-alkyl groups are suitable as the substituent R1. The X-ray crystal structural analysis of (E)-3- (p-carboxyphenylseleno)-4-fluorohex-3-ene - the first example of an uncharged fluoroselenoolefin synthesized from p- EtO2C-C6H4-Se-SnMe3, XeF2, and 3-hexyne followed by an ester hydrolysis - shows that the addition of the selenenylfluoride intermediate to the acetylene proceeds via a trans-addition, as is known for the R2Se2-XeF2 reagents.}, language = {en} } @article{KovacsTothKleinpeteretal.2003, author = {Kovacs, J. and Toth, G. and Kleinpeter, Erich and Schilde, Uwe}, title = {Crystal structure of trans, cis-({\~n})-3{\"i}-4-fluorophenyl)-2-phenylspiro[2H-1-benzothiopyran-34H,2{\"i}-oxiran]-4-one 1- oxide, C22H15FO3S}, issn = {1433-7266}, year = {2003}, language = {en} } @article{RathAnandSankaretal.2003, author = {Rath, Harapriya and Anand, V. G. and Sankar, J. and Venkatraman, S. and Chandrashekar, T. K. and Joshi, Bhawani S. and Khetrapal, C. L. and Schilde, Uwe and Senge, Mathias O.}, title = {Core-Modified Hexaphyrins; Characterization of Two- and Four-Ring Inverted 26 {\^o} Aromatic Macrocycles}, year = {2003}, language = {en} } @article{WenzelWehseSchildeetal.2004, author = {Wenzel, Barbara and Wehse, Burkhard and Schilde, Uwe and Strauch, Peter}, title = {1,2-Dithioquadratato- und 1,2-Dithiooxalatoindate(III) = 1,2-dithiosquarato- and 1,2-dithiooxalatoindates(III)}, year = {2004}, abstract = {Indium(III) chloride forms in water with potassium 1,2-dithiooxalate (dto) and potassium 1,2-dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2-dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2-dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe(3)N)(4)[(dto)(2)In(dto)In(dto)(2)] (1), (BzlPh(3)P)(4)[(dto)(2)In(dto)In(dto)(2)] (2), (BzlMe(3)N)(3)[In(dtsq)(3)] (3), (Bu4N)(3)[In(dtsq)(3)] (4) and (Ph4P)[In(dtsq)(2)(DMF)(2)] (5), have been isolated and characterized by X-ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1, monoclinic in P2(1)/c with a = 14.4035(5) Angstrom, b = 10.8141(5) Angstrom, c = 23.3698(9) Angstrom, beta = 124.664(2)degrees, and Z = 2; 2, triclinic in P (1) over bar with a = 11.3872(7) Angstrom, b = 13.6669(9) Angstrom, c = 17.4296(10) Angstrom, alpha = 88.883(5)degrees, beta = 96.763(1)degrees, gamma = 74.587(5)degrees, and Z = 1; 3, hexagonal in R3 with a = 20.6501(16) Angstrom, b = 20.6501(16) Angstrom, c = 19.0706(13) Angstrom and Z = 6; 4, monoclinic in P21/c with a = 22.7650(15) Angstrom, b = 20.4656(10) Angstrom, c = 14.4770(9) Angstrom, P}, language = {de} } @article{SieboldKellingSchildeetal.2005, author = {Siebold, M. and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Heterobimetallic 3d-4-complexes with bis(1;2-dithiooxalato)nickelate(II) as planar bridging block}, issn = {0932-0776}, year = {2005}, abstract = {Planar bis(1,2-dithiooxalato)nickelates(II) react in aqueous solutions of lanthanide ions to form pentanuclear, heterobimetallic complexes of the general composition [{Ln(H2O)(n)}(2)- {Ni(dto)(2)}(3)] (.) xH(2)O (Ln = Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+; n = 4 or 5; x = 9-12). With [{Nd(H2O)(5)}(2){Ni(S2C2O2)(2)}(3)] (.) xH(2)O (x = 10-12) (1) and [{Er(H2O)(4)}(2){Ni(S2C2O2)(2)}(3)] (.) xH(2)O (x = 9- 10) (2) we were able to isolate two complexes of this series as single crystals, which were characterized by X-ray structure analysis. Depending on the individual ionic radii of the lanthanide ions, the compounds crystallize in two different crystal systems with the following unit cell parameters: 1, monoclinic in P2(1)/c with a = 11.3987(13), b = 11.4878(8), c = 20.823(2)angstrom , beta = 98.907(9)degrees and Z = 2; 2, triclinic in P (1) over bar with a = 10.5091(6), b = 11.0604(6), c = 11.2823(6) angstrom, alpha = 107.899(4)degrees, beta = 91.436(4)degrees, gamma = 112.918(4)degrees and Z = 1. The channels and cavities appearing in the packing of the molecules are occupied by uncoordinated water molecules. High magnetic moments up to 14.65 BM./f.u. have been observed at room temperature due to the combined moments of the individual lanthanide ions}, language = {en} } @article{RyppaSengeHatscheretal.2005, author = {Ryppa, C. and Senge, Mathias O. and Hatscher, S. S. and Kleinpeter, Erich and Wacker, Philipp and Schilde, Uwe and Wiehe, A.}, title = {Synthesis of mono- and disubstituted porphyrins : A- and 5,10-A(2)-type systems}, issn = {0947-6539}, year = {2005}, abstract = {General syntheses have been developed for meso-substituted porphyrins with one or two substituents in the 5,10- positions and no beta substituents. 5-Substituted porphyrins with only one meso substituent are easily prepared by an acid-catalyzed condensation of dipyrromethane, pyrrole-2-carbaldehyde. and an appropriate aldehyde using a "[2+1+1]" approach. Similarly, 5,10-disubstituted porphyrins are accessible by simple condensation of unsubstituted tripyrrane with pyrrole and various aldehydes using a "[3+1]" approach. The yields for these reactions are low to moderate and additional formation of either di- or mono-substituted porphyrins due to scrambling of the intermediates is observed. However, the reactions can be performed quite easily and the desired target compounds are easily removed due to large differences in solubility. A complementary and more selective synthesis involves the use of organolithium reagents for SNAr reactions. Reaction of in situ generated porphyrin (porphine) with 1.1-8 equivalents of RLi gave the monosubstituted porphyrins, while reaction with 3-6 equivalents of RLi gave the 5,10-disubstituted porphyrins in yields ranging from 43 to 90\%. These hitherto almost inaccessible compounds complete the series of different homologues of A-, 5,15-A(2)-, 5,10-A(2)-, A(3)-, and A(4)-type porphyrin's and allow an investigation of the gradual influence of type, number, and regiochemical arrangement of substituents on the properties of meso-substituted porphyrins. They also present important starting materials for the synthesis of ABCD porphyrins and are potential synthons for supramolecular materials requiring specific substituent orientations}, language = {en} } @article{KimSchildeLinker2005, author = {Kim, Boo Geun and Schilde, Uwe and Linker, Torsten}, title = {New radical approaches to 3-deoxy-D-oct-2-ulosonic acids (KDO)}, issn = {0039-7881}, year = {2005}, abstract = {Two different approaches. with an unsaturated carbohydrate as a radical acceptor and a carbohydrate derived aldehyde as a radical precursor, led to key intermediates in the synthesis of 3-deoxy-D-oct-2-ulosonic acids (KDO). Manganese(III) acetate and cerium(IV) ammonium nitrate were the reagents of choice for the oxidative generation of radicals, whereas samarium(II) iodide was employed for reductive couplings. Both strategies were realized by using easily available starting materials, with acetic acid as C-2 and ethyl acrylate as C-3 building blocks, respectively}, language = {en} } @article{PeikowMaternPeteretal.2005, author = {Peikow, Dirk and Matern, Christa-Maria and Peter, Martin G. and Schilde, Uwe}, title = {Crystal structure of (1,4,7,10,13-pentaoxacyclopentadecane-O,O ',O '',O ''')(trifluoromethanesulfonato-O,O ')sodium, Na(C10H20O5)(CF3SO3)}, year = {2005}, abstract = {C11H20F3NaO8S, monoclinic, P121/nil (no. 11), a = 7.947(1) angstrom, b = 12.056(1) angstrom, c = 9.083(1) angstrom, P = 106.01 (1)degrees, V = 836.4 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.120, T = 210 K.}, language = {en} } @article{KlinkaBalentovaBernatetal.2006, author = {Klinka, Karel D. and Balentova, Eva and Bern{\´a}t, Juraj and Imrich, J{\´a}n and Vavrusov{\´a}, Martina and Pihlaja, Kalevi and Koch, Andreas and Kleinpeter, Erich and Kelling, Alexandra and Schilde, Uwe}, title = {Structural revision of products resulting from the reaction of methylhydrazine with acridin-9-yl isothiocyanate due to unexpected acridinyl migration And further reactions}, issn = {1551-7004}, year = {2006}, abstract = {The reaction of methyl acridin-9-ylthiosemicarbazide under basic conditions with methyl bromoacetate resulted in a 1,3-thiazolin-4-one structure as provided by X-ray crystallography. The structure forced a re-evaluation of the reactant methyl acridin-9-ylthiosemicarbazide, originally thought to be 2-methyl 4-acridin-9-ylthiosemicarbazide based on synthetic expectations, but which when examined by X-ray crystallography was found to be in fact the isomeric 2- methyl 1-acridin-9-ylthiosemicarbazide resulting from rearrangement via a spiro form which it is in equilibrium with in solution. The product resulting from reaction with methyl iodide was also studied and the previously reported semicarbazide produced by reaction with MNO was re-examined. In both cases, the 1,2 isomer rather than the 2,4 isomer was found to be present based on the sign of the 3JCH3,N11 coupling. Full characterization of the compounds was rendered by 1H, 13C, and 15N solution-state NMR, and in the solid state, by both 13C and 15N NMR.}, language = {en} } @article{GroboschMicklerFeisteletal.2006, author = {Grobosch, Thomas and Mickler, Wulfhard and Feistel, Lothar and Schilde, Uwe}, title = {Separation of arsenic and other heavy metals with impregnated adsorber polymers : chapter 1: synthesis of the impregnation medium and separation of arsenic}, issn = {0009-286X}, doi = {10.1002/cite.200500170}, year = {2006}, language = {en} } @article{ShainyanMoskalikStarkeetal.2010, author = {Shainyan, Bagrat A. and Moskalik, Mikail Yu and Starke, Ines and Schilde, Uwe}, title = {Formation of unexpected products in the attempted aziridination of styrene with trifluoromethanesulfonyl nitrene}, issn = {0040-4020}, doi = {10.1016/j.tet.2010.08.070}, year = {2010}, abstract = {The reaction of styrene with trifluoromethanesulfonyl nitrene generated from trifluoromethanesulfonamide in the system (t-BuOCl+NaI) results in the formation of trifluoro-N-[2-phenyl-2-(trifluoromethylsulfonyl) aminoethyl]methanesulfonamide, 1-pheny1-2-iodo-ethanol, and 2,5-diphenyl-1,4-bis(trifluoromethyl sulfonyl)piperazine rather than the expected product of aziridination, 2-phenyl-1-(trifluoromethylsulfonyl) aziridine. The mechanism of the reaction is discussed.}, language = {en} } @article{ShainyanUshakovMeshcheryakovetal.2007, author = {Shainyan, Bagrat A. and Ushakov, Igor A. and Meshcheryakov, Vladimir I. and Schilde, Uwe and Koch, Andreas and Kleinpeter, Erich}, title = {The stereodynamics of 3,5-bis(trifluoromethylsulfonyl)-1,3,5-oxadiazinane and 1,3,5- tris(trifluoromethylsulfonyl)-1,3,5-triazinane- an experimental and theoretical study}, doi = {10.1016/j.tet.2007.09.041}, year = {2007}, abstract = {Multinuclear dynamic NMR spectroscopy of 3,5-bis(trifluoromethylsulfonyl)-1,3,5-oxadiazinane (3) revealed the existence of two conformers with differently oriented CF3 groups with respect to the ring, and two dynamic processes: ring inversion and restricted rotation about the N-S bond. Two transition states connecting the two conformers and corresponding to clockwise and counterclockwise rotations about the N-S bond were found; the calculated activation barriers of about 12 kcal/mol are in excellent agreement with those measured experimentally for the related molecule 1,3,5-tris(trifluoromethylsulfonyl)-1,3,5-triazinane (1). X-ray analysis proved the existence of the symmetric isomer of 3, which is the minor isomer in solutions but the only one in the crystal due to packing effects. The normal Perlin effect (JCHax < JCHeq)observed for 2(6)-CH2 in 3, whereas the reversed Perlin effect was found for the 4-CH2 group in 3 as well as for all CH2 groups in 1 both experimentally and theoretically. The latter effect in compounds 1, 3, and 1- (methylsulfonyl)-3,5-bis(trifluoromethylsulfonyl)-1,3,5-triazinane (2) can be considered as a genuine reverse Perlin effect since larger values of 1JCH are observed for longer C-H bonds.}, language = {en} } @article{HoldtMuellerKellingetal.2006, author = {Holdt, Hans-J{\"u}rgen and M{\"u}ller, Holger and Kelling, Alexandra and Drexler, Hans-Joachim and M{\"u}ller, Thomas and Schwarze, Thomas and Schilde, Uwe and Starke, Ines}, title = {Mercury(II) chloride and iodide complexes of dithia- and tetrathiacrown ethers}, issn = {0044-2313}, doi = {10.1002/zaac.200500281}, year = {2006}, abstract = {The complexes [(HgCl2)(2)((ch)(2)30S(4)O(6))] (1), [HgCl,(mn21S(2)O(5))] (2), [HgCl2(ch18S(2)O(4))] (3) and [HgI(meb12S(2)O(2))](2)[Hg2I6] (4) have been synthesized, characterized and their crystal structures were determined. In [(HgCl2)(2)((ch)(2)3OS(4)O(6))] two HgCl2 units are discretely bonded within the ligand cavity of the 30-membered dichinoxaline-tetrathia-30-crown-10 ((ch)(2)30S(4)O(6)) forming a binuclear complex. HgCl2 forms I : I "in-cavity" complexes with the 21-membered maleonitrile-dithia-21-crown-7(mn21S(2)O(5)) ligand and the 18-membered chinoxaline- dithia-18-crown-6 (ch18S(2)O(4)) ligand, respectively. The 12-membered 4-methyl-benzo-dithia-12-crown-4 (meb12S(2)O(2)) ligand gave with two equivalents HgI2 the compound [HgI(meb12S(2)O(2))](2)[Hg2I6]. In the cation [HgI(meb12S(2)O(2))](+) meb12S(2)O(2) forms with the cation HgI+ a half-sandwich complex}, language = {en} } @article{KammerMuellerGrunwaldetal.2006, author = {Kammer, Stefan and M{\"u}ller, Holger and Grunwald, Nicolas and Bellin, Anja and Kelling, Alexandra and Schilde, Uwe and Mickler, Wulfhard and Dosche, Carsten and Holdt, Hans-J{\"u}rgen}, title = {Supramolecular assemblies with honeycomb structures by pi-pi stacking of octahedral metal complexes of 1,12- diazaperylene}, issn = {1343-1948}, doi = {10.1002/ejic.200600092}, year = {2006}, abstract = {Homoleptic Ni-II and Fe-II complexes of the "large-surface" phenanthroline-type ligand 1,12-diazaperylene (dap), [Ni(dap)(3)](BF4)(2) (1) and [Fe(dap)(3)](PF6)(2) (2), respectively, were synthesized. In the crystal structure the complex cation [M(dap)(3)](2+) (M = Ni, Fe) exhibits C-3 symmetry and interacts with three other cations by pi-pi stacking. It forms a new metalla-supramolecular assembly with a honeycomb structure containing nanochannels running parallel to the crystallographic c axis. Aggregation by pi-pi stacking between metal complexes of "large-surface" ligands should give new perspectives for inorganic supramolecular chemistry.}, language = {en} } @article{HoldtMuellerPotteretal.2006, author = {Holdt, Hans-J{\"u}rgen and M{\"u}ller, Holger and Potter, Matthias and Kelling, Alexandra and Schilde, Uwe and Starke, Ines and Heydenreich, Matthias and Kleinpeter, Erich}, title = {The first sandwich complex with an octa(thioether) coordination sphere : Bis(maleonitrile-tetrathia-12-crown- 4)silver(I)}, issn = {1434-1948}, doi = {10.1002/ejic.200501109}, year = {2006}, abstract = {The new tetrathiacrown ethers maleonitrile-tetrathia-12-crown-4 (mn12S(4)) and maleonitrile-tetrathia-13-crown- 4 (mn13S(4)) have been prepared and characterised by X-ray crystallographic analysis. These crown ethers form 2:1, 3:2 and 1: 1 complexes with AgY (Y = BF4, PF6). The crystal structures of [Ag(mn12S(4))(2)]BF4 (3a), [Ag(mn13S(4))(2)]BF4 (4a) and [Ag-2(mn13S(4))(3)](PF6)(2) (6b) have been determined. Compound 3a contains the centrosymmetric sandwich complex cation [Ag(mn12S(4))(2)](+) where each mn12S(4) ligand is coordinated to the Ag centre in an endo manner through all four S atoms. The 2:1 complex [Ag(mn12S(4))(2)](+) is the first sandwich complex with a tetrathiacrown ether and the first complex with an octa(thioether) coordination sphere. The crystal structure of compound 4a also reveals a 2:1 complex. This complex, [Ag(mnl3S(4))(2)](+), exhibits a half-sandwich structure. One mn13S(4) ligand coordinates to Ag+ by all four S donor atoms and the other 13S(4) crown by only one S atom. Compound 6b contains a dinuclear Ag complex. The Ag complexes 3a,b-8a,b were also studied by electrospray ionisation mass spectrometry. Collision-induced dissociation (CID) was used to compare the relative stability of 2:1 complexes [AgL2]+ and 1:1 complexes [AgL](+) (L = mn12S(4), mn13S(4)). The C-13 NMR chemical shifts of 2:1 and 1:1 Ag complexes and their corresponding free ligands were also estimated and compared. The free energy of the barrier of ring inversion (Delta G(double dagger)) for [Ag(mn12S(4))(2)](+) was determined to be 64 kJmol(-1).}, language = {en} } @article{HahnKellingSchildeetal.2008, author = {Hahn, Simone and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Crystal structure of bis(2-ethylthiomethylpyridine)platinum(II) hexachloroplatinate, [Pt(C8H11NS)2][PtCl6]}, issn = {1433-7266}, doi = {10.1524/ncrs.2008.0216}, year = {2008}, abstract = {C16H22Cl6N2Pt2S2, orthorhombic, Pbca (no. 61), a = 15.5660(8) angstrom, b = 17.4892(9) angstrom, c = 18.161 (1) angstrom, V = 4944. 1 angstrom(3), Z = 8, R-gt(F) = 0.030, wR(ref)(F-2) = 0.055, T = 210 K.}, language = {en} } @article{SchildeErkKleinpeter2006, author = {Schilde, Uwe and Erk, {\c{C}}akil and Kleinpeter, Erich}, title = {The crystal and molecular structures of sodium and barium complexes of dibenzo-24-crown-8 ether}, doi = {10.1524/zkri.2006.221.3.231}, year = {2006}, abstract = {The sodium and barium isothiocyanate complexes of 6,7,9,10,12,13,20,21,23,24,26,27-dodecahydrodibenzo[b,n]- 1,4,7,10,13,16,19,22-octaoxacyclotetracosin (dibenzo-24-crown-8 ether = DB24C8) were synthesized and analyzed by X-ray diffraction. The sodium complex, [Na(DB24C8)(NCS)(H2O)] 1, crystallizes in the orthorhombic space group Fdd2 with 16 molecules in the unit cell. The coordination number of Na is 6 and the central ion is located in a distorted octahedric environment. Only four of the crown ether oxygen atoms are involved. The coordination polyhedron is completed by the isothiocanate anion and by a water molecule, which is stabilized by hydrogen bonds. The barium complex, [Ba(DB24C8)(NCS)(2)] 2, crystallizes in the trigonale space group P3(1)21 with 3 molecules in the unit cell. Crystallographic C-2 symmetry is observed for the complex. The coordination number of Ba is 10. Barium is coordinated with the eight oxygen atoms of the macrocyclic ligand and with two isothiocyanate anions. The absolute structure was estimated using the FLACK parameter}, language = {en} } @article{StarkeKammerGrunwaldetal.2008, author = {Starke, Ines and Kammer, Stefan and Grunwald, Nicolas and Schilde, Uwe and Holdt, Hans-J{\"u}rgen and Kleinpeter, Erich}, title = {Complexation of diazaperylene and bisisoquinoline with transition metal ions in the gas phase studied by electrospray ionization mass spectrometry}, year = {2008}, abstract = {The complex formation of the ligands 1,12-diazaperylene (dap), 1,1-bisisoquinoline (bis), 2,2-bipyridine (bpy) and 1,10-phenanthroline (phen) with transition metal ions (M = Fe, Co, Ni, Cu, Zn, Ru, Os, Re, Pd, Pt, Ag and Cd) in the gas phase has been studied by electrospray ionization mass spectrometry. With the exception of Ru, Os, Fe, Ni and Cu, singly charged complexes [MLn]+ (n = 1,2) were observed. The complexes of dap and bis with Ru, Os, Fe and Ni ions, and the mixed ligand complexes with bpy and phen, are preferably of the doubly charged type [ML3]2+. In addition, collision- induced dissociation (CID) measurements were employed to evaluate the relative stabilities of these complexes. The CID experiments of mixed-ligand complexes which contain both dap and phen or dap and bpy exhibit preferential elimination of bpy, indicating that bpy is a weaker ligand than phen and dap.}, language = {en} } @article{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, series = {Acta crystallographica Section E ; Crystallographic communications}, volume = {72}, journal = {Acta crystallographica Section E ; Crystallographic communications}, number = {12}, publisher = {IUCR}, address = {Chester}, issn = {2056-9890}, doi = {10.1107/S2056989016018727}, pages = {1839 -- 1844}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis(acetyloxy)-7-oxo-2-oxabicyclo- [4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acetyloxy-7- hydroxyimino-2-oxobicyclo[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5- yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} }