@article{MbebiBreitlerBordeauxetal.2022, author = {Mbebi, Alain J. and Breitler, Jean-Christophe and Bordeaux, M'elanie and Sulpice, Ronan and McHale, Marcus and Tong, Hao and Toniutti, Lucile and Castillo, Jonny Alonso and Bertrand, Benoit and Nikoloski, Zoran}, title = {A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids}, series = {G3: Genes, genomes, genetics}, volume = {12}, journal = {G3: Genes, genomes, genetics}, number = {9}, publisher = {Genetics Soc. of America}, address = {Pittsburgh, PA}, issn = {2160-1836}, doi = {10.1093/g3journal/jkac170}, pages = {11}, year = {2022}, abstract = {Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the prediction of growth-related traits for crops.}, language = {en} } @article{HeimLisovskiWieczoreketal.2022, author = {Heim, Birgit and Lisovski, Simeon and Wieczorek, Mareike and Morgenstern, Anne and Juhls, Bennet and Shevtsova, Iuliia and Kruse, Stefan and Boike, Julia and Fedorova, Irina and Herzschuh, Ulrike}, title = {Spring snow cover duration and tundra greenness in the Lena Delta, Siberia}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac8066}, pages = {18}, year = {2022}, abstract = {The Lena Delta in Siberia is the largest delta in the Arctic and as a snow-dominated ecosystem particularly vulnerable to climate change. Using the two decades of MODerate resolution Imaging Spectroradiometer satellite acquisitions, this study investigates interannual and spatial variability of snow-cover duration and summer vegetation vitality in the Lena Delta. We approximated snow by the application of the normalized difference snow index and vegetation greenness by the normalized difference vegetation index (NDVI). We consolidated the analyses by integrating reanalysis products on air temperature from 2001 to 2021, and air temperature, ground temperature, and the date of snow-melt from time-lapse camera (TLC) observations from the Samoylov observatory located in the central delta. We extracted spring snow-cover duration determined by a latitudinal gradient. The 'regular year' snow-melt is transgressing from mid-May to late May within a time window of 10 days across the delta. We calculated yearly deviations per grid cell for two defined regions, one for the delta, and one focusing on the central delta. We identified an ensemble of early snow-melt years from 2012 to 2014, with snow-melt already starting in early May, and two late snow-melt years in 2004 and 2017, with snow-melt starting in June. In the times of TLC recording, the years of early and late snow-melt were confirmed. In the three summers after early snow-melt, summer vegetation greenness showed neither positive nor negative deviations. Whereas, vegetation greenness was reduced in 2004 after late snow-melt together with the lowest June monthly air temperature of the time series record. Since 2005, vegetation greenness is rising, with maxima in 2018 and 2021. The NDVI rise since 2018 is preceded by up to 4 degrees C warmer than average June air temperature. The ongoing operation of satellite missions allows to monitor a wide range of land surface properties and processes that will provide urgently needed data in times when logistical challenges lead to data gaps in land-based observations in the rapidly changing Arctic.}, language = {en} } @article{MontesOsunaCernavaGomezLamaCabanasetal.2022, author = {Montes-Osuna, Nuria and Cernava, Tomislav and Gomez-Lama Cabanas, Carmen and Berg, Gabriele and Mercado-Blanco, Jesus}, title = {Identification of volatile organic compounds emitted by two beneficial endophytic pseudomonas strains from olive roots}, series = {Plants}, volume = {11}, journal = {Plants}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2223-7747}, doi = {10.3390/plants11030318}, pages = {14}, year = {2022}, abstract = {The production of volatile organic compounds (VOCs) represents a promising strategy of plant-beneficial bacteria to control soil-borne phytopathogens. Pseudomonas sp. PICF6 and Pseudomonas simiae PICF7 are two indigenous inhabitants of olive roots displaying effective biological control against Verticillium dahliae. Additionally, strain PICF7 is able to promote the growth of barley and Arabidopsis thaliana, VOCs being involved in the growth of the latter species. In this study, the antagonistic capacity of these endophytic bacteria against relevant phytopathogens (Verticillium spp., Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium oxysporum f.sp. lycopersici) was assessed. Under in vitro conditions, PICF6 and PICF7 were only able to antagonize representative isolates of V. dahliae and V. longisporum. Remarkably, both strains produced an impressive portfolio of up to twenty VOCs, that included compounds with reported antifungal (e.g., 1-undecene, (methyldisulfanyl) methane and 1-decene) or plant growth promoting (e.g., tridecane, 1-decene) activities. Moreover, their volatilomes differed strongly in the absence and presence of V. dahliae. For example, when co incubated with the defoliating pathotype of V. dahliae, the antifungal compound 4-methyl-2,6-bis(2-methyl-2-propanyl)phenol was produced. Results suggest that volatiles emitted by these endophytes may differ in their modes of action, and that potential benefits for the host needs further investigation in planta.}, language = {en} } @article{NwosuBrauerKaiseretal.2021, author = {Nwosu, Ebuka Canisius and Brauer, Achim and Kaiser, J{\´e}r{\^o}me and Horn, Fabian and Wagner, Dirk and Liebner, Susanne}, title = {Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany}, series = {Journal of paleolimnology}, volume = {66}, journal = {Journal of paleolimnology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-021-00206-9}, pages = {279 -- 296}, year = {2021}, abstract = {Since the beginning of the Anthropocene, lacustrine biodiversity has been influenced by climate change and human activities. These factors advance the spread of harmful cyanobacteria in lakes around the world, which affects water quality and impairs the aquatic food chain. In this study, we assessed changes in cyanobacterial community dynamics via sedimentary DNA (sedaDNA) from well-dated lake sediments of Lake Tiefer See, which is part of the Klocksin Lake Chain spanning the last 350 years. Our diversity and community analysis revealed that cyanobacterial communities form clusters according to the presence or absence of varves. Based on distance-based redundancy and variation partitioning analyses (dbRDA and VPA) we identified that intensified lake circulation inferred from vegetation openness reconstructions, delta C-13 data (a proxy for varve preservation) and total nitrogen content were abiotic factors that significantly explained the variation in the reconstructed cyanobacterial community from Lake Tiefer See sediments. Operational taxonomic units (OTUs) assigned to Microcystis sp. and Aphanizomenon sp. were identified as potential eutrophication-driven taxa of growing importance since circa common era (ca. CE) 1920 till present. This result is corroborated by a cyanobacteria lipid biomarker analysis. Furthermore, we suggest that stronger lake circulation as indicated by non-varved sediments favoured the deposition of the non-photosynthetic cyanobacteria sister clade Sericytochromatia, whereas lake bottom anoxia as indicated by subrecent- and recent varves favoured the Melainabacteria in sediments. Our findings highlight the potential of high-resolution amplicon sequencing in investigating the dynamics of past cyanobacterial communities in lake sediments and show that lake circulation, anoxic conditions, and human-induced eutrophication are main factors explaining variations in the cyanobacteria community in Lake Tiefer See during the last 350 years.}, language = {en} } @article{MannaZoccaratoBanchietal.2022, author = {Manna, Vincenzo and Zoccarato, Luca and Banchi, Elisa and Arnosti, Carol and Grossart, Hans-Peter and Celussi, Mauro}, title = {Linking lifestyle and foraging strategies of marine bacteria}, series = {Environmental microbiology reports}, volume = {14}, journal = {Environmental microbiology reports}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.13059}, pages = {549 -- 558}, year = {2022}, abstract = {Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.}, language = {en} } @article{MinutilloRuanoRosaAbdelfattahetal.2022, author = {Minutillo, Serena A. and Ruano-Rosa, David and Abdelfattah, Ahmed and Schena, Leonardo and Malacrino, Antonino}, title = {The fungal microbiome of wheat flour includes potential mycotoxin producers}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050676}, pages = {9}, year = {2022}, abstract = {Consumers are increasingly demanding higher quality and safety standards for the products they consume, and one of this is wheat flour, the basis of a wide variety of processed products. This major component in the diet of many communities can be contaminated by microorganisms before the grain harvest, or during the grain storage right before processing. These microorganisms include several fungal species, many of which produce mycotoxins, secondary metabolites that can cause severe acute and chronic disorders. Yet, we still know little about the overall composition of fungal communities associated with wheat flour. In this study, we contribute to fill this gap by characterizing the fungal microbiome of different types of wheat flour using culture-dependent and -independent techniques. Qualitatively, these approaches suggested similar results, highlighting the presence of several fungal taxa able to produce mycotoxins. In-vitro isolation of fungal species suggest a higher frequency of Penicillium, while metabarcoding suggest a higher abundance of Alternaria. This discrepancy might reside on the targeted portion of the community (alive vs. overall) or in the specific features of each technique. Thus, this study shows that commercial wheat flour hosts a wide fungal diversity with several taxa potentially representing concerns for consumers, aspects that need more attention throughout the food production chain.}, language = {en} } @article{GluecklerHerzschuhKruseetal.2021, author = {Gl{\"u}ckler, Ramesh and Herzschuh, Ulrike and Kruse, Stefan and Andreev, Andrei and Vyse, Stuart Andrew and Winkler, Bettina and Biskaborn, Boris and Pestryakova, Luidmila Agafyevna and Dietze, Elisabeth}, title = {Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record}, series = {Biogeosciences : BG / European Geosciences Union}, volume = {18}, journal = {Biogeosciences : BG / European Geosciences Union}, number = {13}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-18-4185-2021}, pages = {4185 -- 4209}, year = {2021}, abstract = {Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression.}, language = {en} } @article{CourtinAndreevRaschkeetal.2021, author = {Courtin, J{\´e}r{\´e}my and Andreev, Andrei and Raschke, Elena and Bala, Sarah and Biskaborn, Boris and Liu, Sisi and Zimmermann, Heike and Diekmann, Bernhard and Stoof-Leichsenring, Kathleen R. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Vegetation changes in Southeastern Siberia during the late pleistocene and the holocene}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.625096}, pages = {18}, year = {2021}, abstract = {Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last similar to 35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake's vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the "keystone herbivore" hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene.}, language = {en} } @article{WassermannAbdelfattahWicaksonoetal.2022, author = {Wassermann, Birgit and Abdelfattah, Ahmed and Wicaksono, Wisnu Adi and Kusstatscher, Peter and M{\"u}ller, Henry and Cernava, Tomislav and Goertz, Simon and Rietz, Steffen and Abbadi, Amine and Berg, Gabriele}, title = {The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines}, series = {Microbial biotechnology}, volume = {15}, journal = {Microbial biotechnology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1751-7915}, doi = {10.1111/1751-7915.14077}, pages = {2379 -- 2390}, year = {2022}, abstract = {Seed microbiota influence germination and plant health and have the potential to improve crop performance, but the factors that determine their structure and functions are still not fully understood. Here, we analysed the impact of plant-related and external factors on seed endophyte communities of 10 different oilseed rape (Brassica napus L.) cultivars from 26 field sites across Europe. All seed lots harboured a high abundance and diversity of endophytes, which were dominated by six genera: Ralstonia, Serratia, Enterobacter, Pseudomonas, Pantoea, and Sphingomonas. The cultivar was the main factor explaining the variations in bacterial diversity, abundance and composition. In addition, the latter was significantly influenced by diverse biotic and abiotic factors, for example host germination rates and disease resistance against Plasmodiophora brassicae. A set of bacterial biomarkers was identified to discriminate between characteristics of the seeds, for example Sphingomonas for improved germination and Brevundimonas for disease resistance. Application of a Bayesian community approach suggested vertical transmission of seed endophytes, where the paternal parent plays a major role and might even determine the germination performance of the offspring. This study contributes to the understanding of seed microbiome assembly and underlines the potential of the microbiome to be implemented in crop breeding and biocontrol programmes.}, language = {en} } @phdthesis{Freimuth2024, author = {Freimuth, Nina}, title = {Elucidating the suppression of root hair formation by a member of a novel, short ENTH protein family in Arabidopsis thaliana}, doi = {10.25932/publishup-63499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634994}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 156}, year = {2024}, abstract = {This work analyzed functional and regulatory aspects of the so far little characterized EPSIN N-terminal Homology (ENTH) domain-containing protein EPSINOID2 in Arabidopsis thaliana. ENTH domain proteins play accessory roles in the formation of clathrin-coated vesicles (CCVs) (Zouhar and Sauer 2014). Their ENTH domain interacts with membranes and their typically long, unstructured C-terminus contains binding motifs for adaptor protein complexes and clathrin itself. There are seven ENTH domain proteins in Arabidopsis. Four of them possess the canonical long C-terminus and participate in various, presumably CCV-related intracellular transport processes (Song et al. 2006; Lee et al. 2007; Sauer et al. 2013; Collins et al. 2020; Heinze et al. 2020; Mason et al. 2023). The remaining three ENTH domain proteins, however, have severely truncated C-termini and were termed EPSINOIDs (Zouhar and Sauer 2014; Freimuth 2015). Their functions are currently unclear. Preceding studies focusing on EPSINOID2 indicated a role in root hair formation: epsinoid2 T DNA mutants exhibited an increased root hair density and EPSINOID2-GFP was specifically located in non-hair cell files in the Arabidopsis root epidermis (Freimuth 2015, 2019). In this work, it was clearly shown that loss of EPSINOID2 leads to an increase in root hair density through analyses of three independent mutant alleles, including a newly generated CRISPR/Cas9 full deletion mutant. The ectopic root hairs emerging from non-hair positions in all epsinoid2 mutant alleles are most likely not a consequence of altered cell fate, because extensive genetic analyses placed EPSINOID2 downstream of the established epidermal patterning network. Thus, EPSINOID2 seems to act as a cell autonomous inhibitor of root hair formation. Attempts to confirm this hypothesis by ectopically overexpressing EPSINOID2 led to the discovery of post-transcriptional and -translational regulation through different mechanisms. One involves the little characterized miRNA844-3p. Interference with this pathway resulted in ectopic EPSINOID2 overexpression and decreased root hair density, confirming it as negative factor in root hair formation. A second mechanism likely involves proteasomal degradation. Treatment with proteasomal inhibitor MG132 led to EPSINOID2-GFP accumulation, and a KEN box degron motif was identified in the EPSINOID2 sequence associated with degradation through a ubiquitin/proteasome-dependent pathway. In line with a tight dose regulation, genetic analyses of all three mutant alleles indicate that EPSINOID2 is haploinsufficient. Lastly, it was revealed that, although EPSINOID2 promoter activity was found in all epidermal cells, protein accumulation was observed in N-cells only, hinting at yet another layer of regulation.}, language = {en} }