@phdthesis{Zibulski2014, author = {Zibulski, Romy}, title = {Taxonomic composition and biochemical and isotopic characteristics of North-Siberian mosses and their application to the palaeoecological reconstruction of tundra polygon development}, pages = {ii, 127}, year = {2014}, language = {en} } @phdthesis{Wilde2014, author = {Wilde, Anja}, title = {Auspr{\"a}gungen r{\"a}umlicher Identit{\"a}t in ehemaligen sudetendeutschen Gebieten der Tschechischen Republik}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-311-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70247}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 395}, year = {2014}, abstract = {Das tschechische Grenzgebiet ist eine der Regionen in Europa, die in der Folge des Zweiten Weltkrieges am gravierendsten von Umbr{\"u}chen in der zuvor bestehenden Bev{\"o}lkerungsstruktur betroffen waren. Der erzwungenen Aussiedlung eines Großteils der ans{\"a}ssigen Bev{\"o}lkerung folgten die Neubesiedlung durch verschiedenste Zuwanderergruppen sowie teilweise langanhaltende Fluktuationen der Einwohnerschaft. Die Stabilisierung der Bev{\"o}lkerung stand sodann unter dem Zeichen der sozialistischen Gesellschafts- und Wirtschaftsordnung, die die Lebensweise und Raumwahrnehmung der neuen Einwohner nachhaltig pr{\"a}gte. Die Grenz{\"o}ffnung von 1989, die politische Transformation sowie die Integration der Tschechischen Republik in die Europ{\"a}ische Union brachten neue demographische und sozio{\"o}konomische Entwicklungen mit sich. Sie schufen aber auch die Bedingungen daf{\"u}r, sich neu und offen auch mit der spezifischen Geschichte des ehemaligen Sudetenlandes sowie mit dem Zustand der gegenw{\"a}rtigen Gesellschaft in diesem Gebiet auseinanderzusetzen. Im Rahmen der vorliegenden Arbeit wird anhand zweier Beispielregionen untersucht, welche Raumvorstellungen und Raumbindungen bei der heute in den ehemaligen sudetendeutschen Gebieten ans{\"a}ssigen Bev{\"o}lkerung vorhanden sind und welche Einfl{\"u}sse die unterschiedlichen raumstrukturellen Bedingungen darauf aus{\"u}ben. Besonderes Augenmerk wird auf die soziale Komponente der Auspr{\"a}gung r{\"a}umlicher Identit{\"a}t gelegt, das heißt auf die Rolle von Bedeutungszuweisungen gegen{\"u}ber Raumelementen im Rahmen sozialer Kommunikation und Interaktion. Dies erscheint von besonderer Relevanz in einem Raum, der sich durch eine gewisse Heterogenit{\"a}t seiner Einwohnerschaft hinsichtlich ihres ethnischen, kulturellen beziehungsweise biographischen Hintergrundes auszeichnet. Schließlich wird ermittelt, welche Impulse unter Umst{\"a}nden von einer ausgepr{\"a}gten r{\"a}umlichen Identit{\"a}t f{\"u}r die Entwicklung des Raumes ausgehen.}, language = {de} } @phdthesis{Strauss2014, author = {Strauß, Jens}, title = {Organic carbon in ice-rich permafrost}, doi = {10.25932/publishup-7523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75236}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 107, 102}, year = {2014}, abstract = {Permafrost, defined as ground that is frozen for at least two consecutive years, is a distinct feature of the terrestrial unglaciated Arctic. It covers approximately one quarter of the land area of the Northern Hemisphere (23,000,000 km²). Arctic landscapes, especially those underlain by permafrost, are threatened by climate warming and may degrade in different ways, including active layer deepening, thermal erosion, and development of rapid thaw features. In Siberian and Alaskan late Pleistocene ice-rich Yedoma permafrost, rapid and deep thaw processes (called thermokarst) can mobilize deep organic carbon (below 3 m depth) by surface subsidence due to loss of ground ice. Increased permafrost thaw could cause a feedback loop of global significance if its stored frozen organic carbon is reintroduced into the active carbon cycle as greenhouse gases, which accelerate warming and inducing more permafrost thaw and carbon release. To assess this concern, the major objective of the thesis was to enhance the understanding of the origin of Yedoma as well as to assess the associated organic carbon pool size and carbon quality (concerning degradability). The key research questions were: - How did Yedoma deposits accumulate? - How much organic carbon is stored in the Yedoma region? - What is the susceptibility of the Yedoma region's carbon for future decomposition? To address these three research questions, an interdisciplinary approach, including detailed field studies and sampling in Siberia and Alaska as well as methods of sedimentology, organic biogeochemistry, remote sensing, statistical analyses, and computational modeling were applied. To provide a panarctic context, this thesis additionally includes results both from a newly compiled northern circumpolar carbon database and from a model assessment of carbon fluxes in a warming Arctic. The Yedoma samples show a homogeneous grain-size composition. All samples were poorly sorted with a multi-modal grain-size distribution, indicating various (re-) transport processes. This contradicts the popular pure loess deposition hypothesis for the origin of Yedoma permafrost. The absence of large-scale grinding processes via glaciers and ice sheets in northeast Siberian lowlands, processes which are necessary to create loess as material source, suggests the polygenetic origin of Yedoma deposits. Based on the largest available data set of the key parameters, including organic carbon content, bulk density, ground ice content, and deposit volume (thickness and coverage) from Siberian and Alaskan study sites, this thesis further shows that deep frozen organic carbon in the Yedoma region consists of two distinct major reservoirs, Yedoma deposits and thermokarst deposits (formed in thaw-lake basins). Yedoma deposits contain ~80 Gt and thermokarst deposits ~130 Gt organic carbon, or a total of ~210 Gt. Depending on the approach used for calculating uncertainty, the range for the total Yedoma region carbon store is ±75 \% and ±20 \% for conservative single and multiple bootstrapping calculations, respectively. Despite the fact that these findings reduce the Yedoma region carbon pool by nearly a factor of two compared to previous estimates, this frozen organic carbon is still capable of inducing a permafrost carbon feedback to climate warming. The complete northern circumpolar permafrost region contains between 1100 and 1500 Gt organic carbon, of which ~60 \% is perennially frozen and decoupled from the short-term carbon cycle. When thawed and reintroduced into the active carbon cycle, the organic matter qualities become relevant. Furthermore, results from investigations into Yedoma and thermokarst organic matter quality studies showed that Yedoma and thermokarst organic matter exhibit no depth-dependent quality trend. This is evidence that after freezing, the ancient organic matter is preserved in a state of constant quality. The applied alkane and fatty-acid-based biomarker proxies including the carbon-preference and the higher-land-plant-fatty-acid indices show a broad range of organic matter quality and thus no significantly different qualities of the organic matter stored in thermokarst deposits compared to Yedoma deposits. This lack of quality differences shows that the organic matter biodegradability depends on different decomposition trajectories and the previous decomposition/incorporation history. Finally, the fate of the organic matter has been assessed by implementing deep carbon pools and thermokarst processes in a permafrost carbon model. Under various warming scenarios for the northern circumpolar permafrost region, model results show a carbon release from permafrost regions of up to ~140 Gt and ~310 Gt by the years 2100 and 2300, respectively. The additional warming caused by the carbon release from newly-thawed permafrost contributes 0.03 to 0.14°C by the year 2100. The model simulations predict that a further increase by the 23rd century will add 0.4°C to global mean surface air temperatures. In conclusion, Yedoma deposit formation during the late Pleistocene was dominated by water-related (alluvial/fluvial/lacustrine) as well as aeolian processes under periglacial conditions. The circumarctic permafrost region, including the Yedoma region, contains a substantial amount of currently frozen organic carbon. The carbon of the Yedoma region is well-preserved and therefore available for decomposition after thaw. A missing quality-depth trend shows that permafrost preserves the quality of ancient organic matter. When the organic matter is mobilized by deep degradation processes, the northern permafrost region may add up to 0.4°C to the global warming by the year 2300.}, language = {en} } @phdthesis{Kaiser2014, author = {Kaiser, Bj{\"o}rn Onno}, title = {Heat transport processes within the Northeast German basin}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2014}, language = {en} } @phdthesis{Nguyen2014, author = {Nguyen, Van Manh}, title = {Large-scale floodplain sediment dynamics in the Mekong Delta : present state and future prospects}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72512}, school = {Universit{\"a}t Potsdam}, pages = {ix, 95}, year = {2014}, abstract = {The Mekong Delta (MD) sustains the livelihood and food security of millions of people in Vietnam and Cambodia. It is known as the "rice bowl" of South East Asia and has one of the world's most productive fisheries. Sediment dynamics play a major role for the high productivity of agriculture and fishery in the delta. However, the MD is threatened by climate change, sea level rise and unsustainable development activities in the Mekong Basin. But despite its importance and the expected threats, the understanding of the present and future sediment dynamics in the MD is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains and the scarcity of observations. Thus this thesis aimed at (1) the quantification of suspended sediment dynamics and associated sediment-nutrient deposition in floodplains of the MD, and (2) assessed the impacts of likely future boundary changes on the sediment dynamics in the MD. The applied methodology combines field experiments and numerical simulation to quantify and predict the sediment dynamics in the entire delta in a spatially explicit manner. The experimental part consists of a comprehensive procedure to monitor quantity and spatial variability of sediment and associated nutrient deposition for large and complex river floodplains, including an uncertainty analysis. The measurement campaign applied 450 sediment mat traps in 19 floodplains over the MD for a complete flood season. The data also supports quantification of nutrient deposition in floodplains based on laboratory analysis of nutrient fractions of trapped sedimentation.The main findings are that the distribution of grain size and nutrient fractions of suspended sediment are homogeneous over the Vietnamese floodplains. But the sediment deposition within and between ring dike floodplains shows very high spatial variability due to a high level of human inference. The experimental findings provide the essential data for setting up and calibration of a large-scale sediment transport model for the MD. For the simulation studies a large scale hydrodynamic model was developed in order to quantify large-scale floodplain sediment dynamics. The complex river-channel-floodplain system of the MD is described by a quasi-2D model linking a hydrodynamic and a cohesive sediment transport model. The floodplains are described as quasi-2D presentations linked to rivers and channels modeled in 1D by using control structures. The model setup, based on the experimental findings, ignored erosion and re-suspension processes due to a very high degree of human interference during the flood season. A two-stage calibration with six objective functions was developed in order to calibrate both the hydrodynamic and sediment transport modules. The objective functions include hydraulic and sediment transport parameters in main rivers, channels and floodplains. The model results show, for the first time, the tempo-spatial distribution of sediment and associated nutrient deposition rates in the whole MD. The patterns of sediment transport and deposition are quantified for different sub-systems. The main factors influencing spatial sediment dynamics are the network of rivers, channels and dike-rings, sluice gate operations, magnitude of the floods and tidal influences. The superposition of these factors leads to high spatial variability of the sediment transport and deposition, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48\% to 60\% of the sediment load at Kratie, the upper boundary of the MD. Deposited sediment varies from 19\% to 23\% of the annual load at Kratie in Cambodian floodplains, and from 1\% to 6\% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated to the sediment deposition, provide on average more than 50\% of mineral fertilizers typically applied for rice crops in non-flooded ring dike compartments in Vietnam. This large-scale quantification provides a basis for estimating the benefits of the annual Mekong floods for agriculture and fishery, for assessing the impacts of future changes on the delta system, and further studies on coastal deposition/erosion. For the estimation of future prospects a sensitivity-based approach is applied to assess the response of floodplain hydraulics and sediment dynamics to the changes in the delta boundaries including hydropower development, climate change in the Mekong River Basin and effective sea level rise. The developed sediment model is used to simulate the mean sediment transport and sediment deposition in the whole delta system for the baseline (2000-2010) and future (2050-2060) periods. For each driver we derive a plausible range of future changes and discretize it into five levels, resulting in altogether 216 possible factor combinations. Our results thus cover all plausible future pathways of sediment dynamics in the delta based on current knowledge. The uncertainty of the range of the resulting impacts can be decreased in case more information on these drivers becomes available. Our results indicate that the hydropower development dominates the changes in sediment dynamics of the Mekong Delta, while sea level rise has the smallest effect. The floodplains of Vietnamese Mekong Delta are much more sensitive to the changes compared to the other subsystems of the delta. In terms of median changes of the three combined drivers, the inundation extent is predicted to increase slightly, but the overall floodplain sedimentation would be reduced by approximately 40\%, while the sediment load to the Sea would diminish to half of the current rates. These findings provide new and valuable information on the possible impacts of future development on the delta, and indicate the most vulnerable areas. Thus, the presented results are a significant contribution to the ongoing international discussion on the hydropower development in the Mekong basin and its impact on the Mekong delta.}, language = {en} }