@phdthesis{Christ2020, author = {Christ, Simon}, title = {Morphological transitions of vesicles exposed to nonuniform spatio-temporal conditions}, doi = {10.25932/publishup-48078}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480788}, school = {Universit{\"a}t Potsdam}, pages = {viii, 105}, year = {2020}, abstract = {Giant unilamellar vesicles are an important tool in todays experimental efforts to understand the structure and behaviour of biological cells. Their simple structure allows the isolation of the physical elastic properties of the lipid membrane. A central physical property is the bending energy of the membrane, since the many different shapes of giant vesicles can be obtained by finding the minimum of the bending energy. In the spontaneous curvature model the bending energy is a function of the bending rigidity as well as the mean curvature and an additional parameter called the spontaneous curvature, which describes an internal preference of the lipid-bilayer to bend towards one side or the other. The spontaneous and mean curvature are local properties of the membrane. Additional constraints arise from the conservation of the membrane surface area and the enclosed volume, which are global properties. In this thesis the spontaneous curvature model is used to explain the experimental observation of a periodic shape oscillation of a giant unilamellar vesicle that was filled with a protein complex that periodically binds to and unbinds from the membrane. By assuming that the binding of the proteins to the membrane induces a change in the spontaneous curvature the experimentally observed shapes could successfully be explained. This involves the numerical solution of the differential equations as obtained from the minimization of the bending energy respecting the area and volume constraints, the so called shape equations. Vice versa this approach can be used to estimate the spontaneous curvature from experimentally measurable quantities. The second topic of this thesis is the analysis of concentration gradients in rigid conic membrane compartments. Gradients of an ideal gas due to gravity and gradients generated by the directed stochastic movement of molecular motors along a microtubulus were considered. It was possible to calculate the free energy and the bending energy analytically for the ideal gas. In the case of the non-equilibrium system with molecular motors, the characteristic length of the density profile, the jam-length, and its dependency on the opening angle of the conic compartment have been calculated in the mean-field limit. The mean field results agree qualitatively with stochastic particle simulations.}, language = {en} } @phdthesis{Pudell2020, author = {Pudell, Jan-Etienne}, title = {Lattice dynamics}, doi = {10.25932/publishup-48445}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484453}, school = {Universit{\"a}t Potsdam}, pages = {XII, 259}, year = {2020}, abstract = {In this thesis I summarize my contribution to the research field of ultrafast structural dynamics in condensend matter. It consists of 17 publications that cover the complex interplay between electron, magnon, and phonon subsystems in solid materials and the resulting lattice dynamics after ultrafast photoexcitation. The investigation of such dynamics is necessary for the physical understanding of the processes in materials that might become important in the future as functional materials for technological applications, for example in data storage applications, information processing, sensors, or energy harvesting. In this work I present ultrafast x-ray diffraction (UXRD) experiments based on the optical pump - x-ray probe technique revealing the time-resolved lattice strain. To study these dynamics the samples (mainly thin film heterostructures) are excited by femtosecond near-infrared or visible light pulses. The induced strain dynamics caused by stresses of the excited subsystems are measured in a pump-probe scheme with x-ray diffraction (XRD) as a probe. The UXRD setups used during my thesis are a laser-driven table-top x-ray source and large-scale synchrotron facilities with dedicated time-resolved diffraction setups. The UXRD experiments provide quantitative access to heat reservoirs in nanometric layers and monitor the transient responses of these layers with coupled electron, magnon, and phonon subsystems. In contrast to optical probes, UXRD allows accessing the material-specific information, which is unavailable for optical light due to the detection of multiple indistinguishable layers in the range of the penetration depth. In addition, UXRD facilitates a layer-specific probe for layers buried opaque heterostructures to study the energy flow. I extended this UXRD technique to obtain the driving stress profile by measuring the strain dynamics in the unexcited buried layer after excitation of the adjacent absorbing layers with femtosecond laser pulses. This enables the study of negative thermal expansion (NTE) in magnetic materials, which occurs due to the loss of the magnetic order. Part of this work is the investigation of stress profiles which are the source of coherent acoustic phonon wave packets (hypersound waves). The spatiotemporal shape of these stress profiles depends on the energy distribution profile and the ability of the involved subsystems to produce stress. The evaluation of the UXRD data of rare-earth metals yields a stress profile that closely matches the optical penetration profile: In the paramagnetic (PM) phase the photoexcitation results in a quasi-instantaneous expansive stress of the metallic layer whereas in the antiferromagnetic (AFM) phase a quasi-instantaneous contractive stress and a second contractive stress contribution rising on a 10 ps time scale adds to the PM contribution. These two time scales are characteristic for the magnetic contribution and are in agreement with related studies of the magnetization dynamics of rare-earth materials. Several publications in this thesis demonstrate the scientific progress in the field of active strain control to drive a second excitation or engineer an ultrafast switch. These applications of ultrafast dynamics are necessary to enable control of functional material properties via strain on ultrafast time scales. For this thesis I implemented upgrades of the existing laser-driven table-top UXRD setup in order to achieve an enhancement of x-ray flux to resolve single digit nanometer thick layers. Furthermore, I developed and built a new in-situ time-resolved magneto-optic Kerr effect (MOKE) and optical reflectivity setup at the laser-driven table-top UXRD setup to measure the dynamics of lattice, electrons and magnons under the same excitation conditions.}, language = {en} } @misc{AbdallaAdamAharonianetal.2020, author = {Abdalla, Hassan E. and Adam, Remi and Aharonian, Felix A. and Benkhali, Faical Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, Masanori and Arcaro, C and Armand, Catherine and Armstrong, T. and Egberts, Kathrin}, title = {Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526000}, pages = {15}, year = {2020}, abstract = {We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.}, language = {en} } @misc{MetjeLeverMayeretal.2020, author = {Metje, Jan and Lever, Fabiano and Mayer, Dennis and Squibb, Richard James and Robinson, Matthew Scott and Niebuhr, Mario and Feifel, Raimund and D{\"u}sterer, Stefan and G{\"u}hr, Markus}, title = {URSA-PQ}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1016}, issn = {1866-8372}, doi = {10.25932/publishup-48307}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483073}, pages = {15}, year = {2020}, abstract = {We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for 'Ultraschnelle R{\"o}ntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen', Engl. 'ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems') instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments' capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup.}, language = {en} } @phdthesis{Massolt2020, author = {Massolt, Joost Willem}, title = {Perceived relevance of physics problems}, doi = {10.25932/publishup-47292}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472925}, school = {Universit{\"a}t Potsdam}, pages = {102}, year = {2020}, abstract = {Pre-service physics teachers often have difficulties seeing the relevance of the content of the content knowledge courses they attend in their study; they regularly do not see the connection with the physics they need in their later profession as a secondary school teacher. A lower perceived relevance is however connected to motivational problems which leads to both a qualitative and quantitative problem: not only is there a relation between the drop-out of students and their motivation, but their level of conceptual understanding is also suffering under this lower motivation. In order to increase the perceived relevance of the problems that pre-service physics teachers have to solve for the courses Experimentalphysik 1 and 2, an intervention study has been designed and implemented. In these content knowledge courses, first- and second semester students attend lectures, do experiments and they solve problems on weekly problem sets which are discussed in tutorial sessions. The problems on a typical problem set are however mainly quantitative problems that have no connection to school. In the intervention study, regular, quantitative problems are used next to two newly designed conceptual (qualitative) problem types. One of these problem types are conceptual problems that have no implicit or explicit school-relevance; the other problems are based on school-related content knowledge. This content knowledge category describes knowledge that leads to a deeper understanding of school knowledge, relevant for teachers: a teacher-specific content knowledge. A new model for this category, SRCK, has been conceptualised and operationalised as a cross-disciplinary model that consists of conceptual knowledge and skills necessary for this deeper understanding of content that is relevant to teaching at a secondary school. During two semesters in both the courses Experimentalphysik 1 and 2 (N = 75 and N = 43 respectively) students had to solve the problems on the problem sets. At the start of every tutorial session, they were asked to rate all the problems with respect to perceived relevance and difficulty. Analyses show that the problems based on SRCK were perceived as more relevant than the regular, quantitative problems. However, this difference is only statistically significant for the course Experimentalphysik 2. The SRCK-problems show the connection between the content of the problems and school physics and are therefore seen as more relevant. In Experimentalphysik 1, the content is not that distant to school physics. This might be the reason that the students see all the problem types as just as relevant to them. When we however only look at the final third of the first semester, where more advanced subjects - that are not necessarily discussed in secondary school physics - are discussed, we see that in this part the SRCK-problems are seen as more relevant than the regular problems too. We can therefore conclude that if the content is distant to school physics, the SRCK-problems are seen as more relevant than the regular problems. We do not see a statistically significant difference between the (conceptual) problems based on SRCK and the conceptual problems that are not based on SRCK (and therefore have no school relevance). This means that we do not know whether the conceptual problems based on SRCK are more relevant because they are based on SRCK or because they are conceptual. In order to find out what problem properties have an influence on the perceived relevance of these problems by pre-service teachers, an interview study with N = 7 pre-service teachers was conducted. This interview was done using the repertory grid technique, based on the personal construct theory by Kelly (1955). This technique makes it possible to find personal constructs of students: how do students determine for themselves how relevant a problem is to them? It allows to capture their intuition or gut feeling. These personal constructs could then give us information about the problem properties that have a positive influence on relevance. Six categories of personal constructs were found that have a high similarity to relevance. According to the personal constructs that were generated in the interviews, physics problems are more relevant when they are more conceptual (compared to calculational), are close to everyday life, have a lower level of mathematical requirement, have a content that is more school-relevant, give the students the idea that they have learned something, and contain a situation that has to be analysed. Of the six problem properties described above, one can be connected to the facets of SRCK: many problems based on SRCK contain a situation (e.g. a textbook with a simplified explanation, a student solution with an error) that has to be analysed. The expectation is that problems that are based on the six properties described above would be perceived as more relevant to pre-service physics teachers.}, language = {en} } @misc{MakwanaYan2020, author = {Makwana, Kirit D. and Yan, Huirong}, title = {Properties of magnetohydrodynamic modes in compressively driven plasma turbulence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {10}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, publisher = {American Physical Society (APS)}, address = {College Park}, issn = {1866-8372}, doi = {10.25932/publishup-53160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531607}, pages = {17}, year = {2020}, abstract = {We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed.}, language = {en} } @phdthesis{Dunsing2020, author = {Dunsing, Valentin}, title = {Fluorescence fluctuation spectroscopy techniques to quantify molecular interactions and dynamics in complex biological systems}, doi = {10.25932/publishup-47849}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-478494}, school = {Universit{\"a}t Potsdam}, pages = {VII, 164, XXV}, year = {2020}, abstract = {Living cells rely on transport and interaction of biomolecules to perform their diverse functions. A powerful toolbox to study these highly dynamic processes in the native environment is provided by fluorescence fluctuation spectroscopy (FFS) techniques. In more detail, FFS takes advantage of the inherent dynamics present in biological systems, such as diffusion, to infer molecular parameters from fluctuations of the signal emitted by an ensemble of fluorescently tagged molecules. In particular, two parameters are accessible: the concentration of molecules and their transit times through the observation volume. In addition, molecular interactions can be measured by analyzing the average signal emitted per molecule - the molecular brightness - and the cross-correlation of signals detected from differently tagged species. In the present work, several FFS techniques were implemented and applied in different biological contexts. In particular, scanning fluorescence correlation spectroscopy (sFCS) was performed to measure protein dynamics and interactions at the plasma membrane (PM) of cells, and number and brightness (N\&B) analysis to spatially map molecular aggregation. To account for technical limitations and sample related artifacts, e.g. detector noise, photobleaching, or background signal, several correction schemes were explored. In addition, sFCS was combined with spectral detection and higher moment analysis of the photon count distribution to resolve multiple species at the PM. Using scanning fluorescence cross-correlation spectroscopy and cross-correlation N\&B, the interactions of amyloid precursor-like protein 1 (APLP1), a synaptic membrane protein, were investigated. It is shown for the first time directly in living cells, that APLP1 undergoes specific interactions at cell-cell contacts. It is further demonstrated that zinc ions induce formation of large APLP1 clusters that enrich at contact sites and bind to clusters on the opposing cell. Altogether, these results provide direct evidence that APLP1 is a zinc ion dependent neuronal adhesion protein. In the context of APLP1, discrepancies of oligomeric state estimates were observed, which were attributed to non-fluorescent states of the chosen red fluorescent protein (FP) tag mCardinal (mCard). Therefore, multiple FPs and their performance in FFS based measurements of protein interactions were systematically evaluated. The study revealed superior properties of monomeric enhanced green fluorescent protein (mEGFP) and mCherry2. Furthermore, a simple correction scheme allowed unbiased in situ measurements of protein oligomerization by quantifying non-fluorescent state fractions of FP tags. The procedure was experimentally confirmed for biologically relevant protein complexes consisting of up to 12 monomers. In the last part of this work, fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT) were used to characterize diffusive transport dynamics in a bacterial biofilm model. Biofilms are surface adherent bacterial communities, whose structural organization is provided by extracellular polymeric substances (EPS) that form a viscous polymer hydrogel. The presented study revealed a probe size and polymer concentration dependent (anomalous) diffusion hindrance in a reconstituted EPS matrix system caused by polymer chain entanglement at physiological concentrations. This result indicates a meshwork-like organization of the biofilm matrix that allows free diffusion of small particles, but strongly hinders diffusion of larger particles such as bacteriophages. Finally, it is shown that depolymerization of the matrix by phage derived enzymes rapidly facilitated free diffusion. In the context of phage infections, such enzymes may provide a key to evade trapping in the biofilm matrix and promote efficient infection of bacteria. In combination with phage application, matrix depolymerizing enzymes may open up novel antimicrobial strategies against multiresistant bacterial strains, as a promising, more specific alternative to conventional antibiotics.}, language = {en} } @phdthesis{Mardoukhi2020, author = {Mardoukhi, Yousof}, title = {Random environments and the percolation model}, doi = {10.25932/publishup-47276}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472762}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 103}, year = {2020}, abstract = {Percolation process, which is intrinsically a phase transition process near the critical point, is ubiquitous in nature. Many of its applications embrace a wide spectrum of natural phenomena ranging from the forest fires, spread of contagious diseases, social behaviour dynamics to mathematical finance, formation of bedrocks and biological systems. The topology generated by the percolation process near the critical point is a random (stochastic) fractal. It is fundamental to the percolation theory that near the critical point, a unique infinite fractal structure, namely the infinite cluster, would emerge. As de Gennes suggested, the properties of the infinite cluster could be deduced by studying the dynamical behaviour of the random walk process taking place on it. He coined the term the ant in the labyrinth. The random walk process on such an infinite fractal cluster exhibits a subdiffusive dynamics in the sense that the mean squared displacement grows as ~t2/dw, where dw, called the fractal dimension of the random walk path, is greater than 2. Thus, the random walk process on the infinite cluster is classified as a process exhibiting the properties of anomalous diffusions. Yet near the critical point, the infinite cluster is not the sole emergent topology, but it coexists with other clusters whose size is finite. Though finite, on specific length scales these finite clusters exhibit fractal properties as well. In this work, it is assumed that the random walk process could take place on these finite size objects as well. Bearing this assumption in mind requires one address the non-equilibrium initial condition. Due to the lack of knowledge on the propagator of the random walk process in stochastic random environments, a phenomenological correspondence between the renowned Ornstein-Uhlenbeck process and the random walk process on finite size clusters is established. It is elucidated that when an ensemble of these finite size clusters and the infinite cluster is considered, the anisotropy and size of these finite clusters effects the mean squared displacement and its time averaged counterpart to grow in time as ~t(d+df (t-2))/dw, where d is the embedding Euclidean dimension, df is the fractal dimension of the infinite cluster, and , called the Fisher exponent, is a critical exponent governing the power-law distribution of the finite size clusters. Moreover, it is demonstrated that, even though the random walk process on a specific finite size cluster is ergodic, it exhibits a persistent non-ergodic behaviour when an ensemble of finite size and the infinite clusters is considered.}, language = {en} } @misc{LiMeiXuetal.2020, author = {Li, Yongge and Mei, Ruoxing and Xu, Yong and Kurths, J{\"u}rgen and Duan, Jinqiao and Metzler, Ralf}, title = {Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {974}, issn = {1866-8372}, doi = {10.25932/publishup-47454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474542}, pages = {28}, year = {2020}, abstract = {This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the It{\^o} calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.}, language = {en} } @misc{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav and Smirnov, Lev A. and Kostin, Vasily and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524261}, pages = {17}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} }