@phdthesis{Hohenstein2013, author = {Hohenstein, Sven}, title = {Eye movements and processing of semantic information in the parafovea during reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70363}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {When we read a text, we obtain information at different levels of representation from abstract symbols. A reader's ultimate aim is the extraction of the meaning of the words and the text. The reserach of eye movements in reading covers a broad range of psychological systems, ranging from low-level perceptual and motor processes to high-level cognition. Reading of skilled readers proceeds highly automatic, but is a complex phenomenon of interacting subprocesses at the same time. The study of eye movements during reading offers the possibility to investigate cognition via behavioral measures during the excercise of an everyday task. The process of reading is not limited to the directly fixated (or foveal) word but also extends to surrounding (or parafoveal) words, particularly the word to the right of the gaze position. This process may be unconscious, but parafoveal information is necessary for efficient reading. There is an ongoing debate on whether processing of the upcoming word encompasses word meaning (or semantics) or only superficial features. To increase the knowledge about how the meaning of one word helps processing another word, seven experiments were conducted. In these studies, words were exachanged during reading. The degree of relatedness between the word to the right of the currently fixated one and the word subsequently fixated was experimentally manipulated. Furthermore, the time course of the parafoveal extraction of meaning was investigated with two different approaches, an experimental one and a statistical one. As a major finding, fixation times were consistently lower if a semantically related word was presented compared to the presence of an unrelated word. Introducing an experimental technique that allows controlling the duration for which words are available, the time course of processing and integrating meaning was evaluated. Results indicated both facilitation and inhibition due to relatedness between the meanings of words. In a more natural reading situation, the effectiveness of the processing of parafoveal words was sometimes time-dependent and substantially increased with shorter distances between the gaze position and the word. Findings are discussed with respect to theories of eye-movement control. In summary, the results are more compatible with models of distributed word processing. The discussions moreover extend to language differences and technical issues of reading research.}, language = {en} } @phdthesis{Trukenbrod2012, author = {Trukenbrod, Hans Arne}, title = {Temporal and spatial aspects of eye-movement control : from reading to scanning}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70206}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Eye movements are a powerful tool to examine cognitive processes. However, in most paradigms little is known about the dynamics present in sequences of saccades and fixations. In particular, the control of fixation durations has been widely neglected in most tasks. As a notable exception, both spatial and temporal aspects of eye-movement control have been thoroughly investigated during reading. There, the scientific discourse was dominated by three controversies, (i), the role of oculomotor vs. cognitive processing on eye-movement control, (ii) the serial vs. parallel processing of words, and, (iii), the control of fixation durations. The main purpose of this thesis was to investigate eye movements in tasks that require sequences of fixations and saccades. While reading phenomena served as a starting point, we examined eye guidance in non-reading tasks with the aim to identify general principles of eye-movement control. In addition, the investigation of eye movements in non-reading tasks helped refine our knowledge about eye-movement control during reading. Our approach included the investigation of eye movements in non-reading experiments as well as the evaluation and development of computational models. I present three main results : First, oculomotor phenomena during reading can also be observed in non-reading tasks (Chapter 2 \& 4). Oculomotor processes determine the fixation position within an object. The fixation position, in turn, modulates both the next saccade target and the current fixation duration. Second, predicitions of eye-movement models based on sequential attention shifts were falsified (Chapter 3). In fact, our results suggest that distributed processing of multiple objects forms the basis of eye-movement control. Third, fixation durations are under asymmetric control (Chapter 4). While increasing processing demands immediately prolong fixation durations, decreasing processing demands reduce fixation durations only with a temporal delay. We propose a computational model ICAT to account for asymmetric control. In this model, an autonomous timer initiates saccades after random time intervals independent of ongoing processing. However, processing demands that are higher than expected inhibit the execution of the next saccade and, thereby, prolong the current fixation. On the other hand, lower processing demands will not affect the duration before the next saccade is executed. Since the autonomous timer adjusts to expected processing demands from fixation to fixation, a decrease in processing demands may lead to a temporally delayed reduction of fixation durations. In an extended version of ICAT, we evaluated its performance while simulating both temporal and spatial aspects of eye-movement control. The eye-movement phenomena investigated in this thesis have now been observed in a number of different tasks, which suggests that they represent general principles of eye guidance. I propose that distributed processing of the visual input forms the basis of eye-movement control, while fixation durations are controlled by the principles outlined in ICAT. In addition, oculomotor control contributes considerably to the variability observed in eye movements. Interpretations for the relation between eye movements and cognition strongly benefit from a precise understanding of this interplay.}, language = {en} } @phdthesis{Gendt2011, author = {Gendt, Anja}, title = {Eye movements under the control of working memory : the challenge of a reading-span task}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69224}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {During reading oculomotor processes guide the eyes over the text. The visual information recorded is accessed, evaluated and processed. Only by retrieving the meaning of a word from the long-term memory, as well as through the connection and storage of the information about each individual word, is it possible to access the semantic meaning of a sentence. Therefore memory, and here in particular working memory, plays a pivotal role in the basic processes of reading. The following dissertation investigates to what extent different demands on memory and memory capacity have an effect on eye movement behavior while reading. The frequently used paradigm of the reading span task, in which test subjects read and evaluate individual sentences, was used for the experimental review of the research questions. The results speak for the fact that working memory processes have a direct effect on various eye movement measurements. Thus a high working memory load, for example, reduced the perceptual span while reading. The lower the individual working memory capacity of the reader was, the stronger was the influence of the working memory load on the processing of the sentence.}, language = {en} } @phdthesis{Risse2011, author = {Risse, Sarah}, title = {Processing in the perceptual span : investigations with the n+2-boundary paradigm}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60414}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Cognitive psychology is traditionally interested in the interaction of perception, cognition, and behavioral control. Investigating eye movements in reading constitutes a field of research in which the processes and interactions of these subsystems can be studied in a well-defined environment. Thereby, the following questions are pursued: How much information is visually perceived during a fixation, how is processing achieved and temporally coordinated from visual letter encoding to final sentence comprehension, and how do such processes reflect on behavior such as the control of the eyes' movements during reading. Various theoretical models have been proposed to account for the specific eye-movement behavior in reading (for a review see Reichle, Rayner, \& Pollatsek, 2003). Some models are based on the idea of shifting attention serially from one word to the next within the sentence whereas others propose distributed attention allocating processing resources to more than one word at a time. As attention is assumed to drive word recognition processes one major difference between these models is that word processing must either occur in strict serial order, or that word processing is achieved in parallel. In spite of this crucial difference in the time course of word processing, both model classes perform well on explaining many of the benchmark effects in reading. In fact, there seems to be not much empirical evidence that challenges the models to a point at which their basic assumptions could be falsified. One issue often perceived as being decisive in the debate on serial and parallel word processing is how not-yet-fixated words to the right of fixation affect eye movements. Specifically, evidence is discussed as to what spatial extent such parafoveal words are previewed and how this influences current and subsequent word processing. Four experiments investigated parafoveal processing close to the spatial limits of the perceptual span. The present work aims to go beyond mere existence proofs of previewing words at such spatial distances. Introducing a manipulation that dissociates the sources of long-range preview effects, benefits and costs of parafoveal processing can be investigated in a single analysis and the differing impact is tracked across a three-word target region. In addition, the same manipulation evaluates the role of oculomotor error as the cause of non-local distributed effects. In this respect, the results contribute to a better understanding of the time course of word processing inside the perceptual span and attention allocation during reading.}, language = {en} } @phdthesis{Wotschack2009, author = {Wotschack, Christiane}, title = {Eye movements in reading strategies : how reading strategies modulate effects of distributed processing and oculomotor control}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-021-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-36846}, school = {Universit{\"a}t Potsdam}, pages = {213}, year = {2009}, abstract = {Throughout its empirical research history eye movement research has always been aware of the differences in reading behavior induced by individual differences and task demands. This work introduces a novel comprehensive concept of reading strategy, comprising individual differences in reading style and reading skill as well as reader goals. In a series of sentence reading experiments recording eye movements, the influence of reading strategies on reader- and word-level effects assuming distributed processing has been investigated. Results provide evidence for strategic, top-down influences on eye movement control that extend our understanding of eye guidance in reading.}, language = {en} } @phdthesis{Ong2007, author = {Ong, James Kwan Yau}, title = {The predictability problem}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15025}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Wir versuchen herauszufinden, ob das subjektive Maß der Cloze-Vorhersagbarkeit mit der Kombination objektiver Maße (semantische und n-gram-Maße) gesch{\"a}tzt werden kann, die auf den statistischen Eigenschaften von Textkorpora beruhen. Die semantischen Maße werden entweder durch Abfragen von Internet-Suchmaschinen oder durch die Anwendung der Latent Semantic Analysis gebildet, w{\"a}hrend die n-gram-Wortmaße allein auf den Ergebnissen von Internet-Suchmaschinen basieren. Weiterhin untersuchen wir die Rolle der Cloze-Vorhersagbarkeit in SWIFT, einem Modell der Blickkontrolle, und w{\"a}gen ab, ob andere Parameter den der Vorhersagbarkeit ersetzen k{\"o}nnen. Unsere Ergebnisse legen nahe, dass ein computationales Modell, welches Vorhersagbarkeitswerte berechnet, nicht nur Maße beachten muss, die die Relatiertheit eines Wortes zum Kontext darstellen; das Vorhandensein eines Maßes bez{\"u}glich der Nicht-Relatiertheit ist von ebenso großer Bedeutung. Obwohl hier jedoch nur Relatiertheits-Maße zur Verf{\"u}gung stehen, sollte SWIFT ebensogute Ergebnisse liefern, wenn wir Cloze-Vorhersagbarkeit mit unseren Maßen ersetzen.}, language = {en} } @phdthesis{Nuthmann2005, author = {Nuthmann, Antje}, title = {The "where" and "when" of eye fixations in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7931}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {To investigate eye-movement control in reading, the present thesis examined three phenomena related to the eyes' landing position within words, (1) the optimal viewing position (OVP), (2) the preferred viewing location (PVL), and (3) the Fixation-Duration Inverted-Optimal Viewing Position (IOVP) Effect. Based on a corpus-analytical approach (Exp. 1), the influence of variables word length, launch site distance, and word frequency was systematically explored. In addition, five experimental manipulations were conducted. First, word center was identified as the OVP, that is the position within a word where refixation probability is minimal. With increasing launch site distance, however, the OVP was found to move towards the word beginning. Several possible causes of refixations were discussed. The issue of refixation saccade programming was extensively investigated, suggesting that pre-planned and directly controlled refixation saccades coexist. Second, PVL curves, that is landing position distributions, show that the eyes are systematically deviated from the OVP, due to visuomotor constraints. By far the largest influence on mean and standard deviation of the Gaussian PVL curve was exhibited by launch site distance. Third, it was investigated how fixation durations vary as a function of landing position. The IOVP effect was replicated: Fixations located at word center are longer than those falling near the edges of a word. The effect of word frequency and/or launch site distance on the IOVP function mainly consisted in a vertical displacement of the curve. The Fixation-Duration IOVP effect is intriguing because word center (the OVP) would appear to be the best place to fixate and process a word. A critical part of the current work was devoted to investigate the origin of the effect. It was suggested that the IOVP effect arises as a consequence of mislocated fixations, i.e. fixations on unintended words, which are caused by saccadic errors. An algorithm for estimating the proportion of mislocated fixations from empirical data was developed, based on extrapolations of landing position distributions beyond word boundaries. As a new central theoretical claim it was suggested that a new saccade program is started immediately if the intended target word is missed. On average, this will lead to decreased durations for mislocated fixations. Because mislocated fixations were shown to be most prevalent at the beginning and end of words, the proposed mechanism generated the inverted U-shape for fixation durations when computed as a function of landing position. The proposed mechanism for generating the effect is generally compatible with both oculomotor and cognitive models of eye-movement control in reading.}, subject = {Allgemeine Psychologie}, language = {en} }