@article{NakamuraSteupColleonietal.2022, author = {Nakamura, Yasunori and Steup, Martin and Colleoni, Christophe and Iglesias, Alberto A. and Bao, Jinsong and Fujita, Naoko and Tetlow, Ian}, title = {Molecular regulation of starch metabolism}, series = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, volume = {108}, journal = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, number = {4-5}, publisher = {Springer}, address = {Dordrecht}, issn = {0167-4412}, doi = {10.1007/s11103-022-01253-0}, pages = {289 -- 290}, year = {2022}, language = {en} } @article{KathGaedkevanVelzen2022, author = {Kath, Nadja Jeanette and Gaedke, Ursula and van Velzen, Ellen}, title = {The double-edged sword of inducible defences: costs and benefits of maladaptive switching from the individual to the community level}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1288}, issn = {1866-8372}, doi = {10.25932/publishup-57200}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572006}, pages = {14}, year = {2022}, abstract = {Phenotypic plasticity can increase individual fitness when environmental conditions change over time. Inducible defences are a striking example, allowing species to react to fluctuating predation pressure by only expressing their costly defended phenotype under high predation risk. Previous theoretical investigations have focused on how this affects predator-prey dynamics, but the impact on competitive outcomes and broader community dynamics has received less attention. Here we use a small food web model, consisting of two competing plastic autotrophic species exploited by a shared consumer, to study how the speed of inducible defences across three trade-off constellations affects autotroph coexistence, biomasses across trophic levels, and temporal variability. Contrary to the intuitive idea that faster adaptation increases autotroph fitness, we found that higher switching rates reduced individual fitness as it consistently provoked more maladaptive switching towards undefended phenotypes under high predation pressure. This had an unexpected positive impact on the consumer, increasing consumer biomass and lowering total autotroph biomass. Additionally, maladaptive switching strongly reduced autotroph coexistence through an emerging source-sink dynamic between defended and undefended phenotypes. The striking impact of maladaptive switching on species and food web dynamics indicates that this mechanism may be of more critical importance than previously recognized.}, language = {en} } @article{AgnePreickStraubeetal.2022, author = {Agne, Stefanie and Preick, Michaela and Straube, Nicolas and Hofreiter, Michael}, title = {Simultaneous Barcode Sequencing of Diverse Museum Collection Specimens Using a Mixed RNA Bait Set}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media S.A.}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.909846}, pages = {5}, year = {2022}, abstract = {A growing number of publications presenting results from sequencing natural history collection specimens reflect the importance of DNA sequence information from such samples. Ancient DNA extraction and library preparation methods in combination with target gene capture are a way of unlocking archival DNA, including from formalin-fixed wet-collection material. Here we report on an experiment, in which we used an RNA bait set containing baits from a wide taxonomic range of species for DNA hybridisation capture of nuclear and mitochondrial targets for analysing natural history collection specimens. The bait set used consists of 2,492 mitochondrial and 530 nuclear RNA baits and comprises specific barcode loci of diverse animal groups including both invertebrates and vertebrates. The baits allowed to capture DNA sequence information of target barcode loci from 84\% of the 37 samples tested, with nuclear markers being captured more frequently and consensus sequences of these being more complete compared to mitochondrial markers. Samples from dry material had a higher rate of success than wet-collection specimens, although target sequence information could be captured from 50\% of formalin-fixed samples. Our study illustrates how efforts to obtain barcode sequence information from natural history collection specimens may be combined and are a way of implementing barcoding inventories of scientific collection material.}, language = {en} } @article{ApriyantoAjambang2022, author = {Apriyanto, Ardha and Ajambang, Walter}, title = {Transcriptomic dataset for early inflorescence stages of oil palm in response to defoliation stress}, series = {Data in Brief}, volume = {41}, journal = {Data in Brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2022.107914}, pages = {6}, year = {2022}, abstract = {Oil palm breeding and seed development have been hindered due to the male parent's incapacity to produce male inflorescence as a source of pollen under normal conditions. On the other hand, a young oil palm plantation has a low pollination rate due to a lack of male flowers. These are the common problem of sex ratio in the oil palm industry. Nevertheless, the regulation of sex ratio in oil palm plants is a complex mechanism and remains an open question until now. Researchers have previously used complete defoliation to induce male inflorescences, but the biological and molecular mechanisms underlying this morphological change have yet to be discovered. Here, we present an RNA-seq dataset from three early stages of an oil palm inflorescence under normal conditions and complete defoliation stress. This transcriptomic dataset is a valuable resource to improve our understanding of sex determination mechanisms in oil palm inflorescence.}, language = {en} } @article{ParrySchlaegelTiedemannetal.2022, author = {Parry, Victor and Schl{\"a}gel, Ulrike E. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Behavioural Responses of Defended and Undefended Prey to Their Predator}, series = {Biology}, volume = {11}, journal = {Biology}, number = {8}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2079-7737}, doi = {10.3390/biology11081217}, pages = {14}, year = {2022}, abstract = {Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.}, language = {en} } @article{WicaksonoBraunBernhardtetal.2022, author = {Wicaksono, Wisnu Adi and Braun, Maria and Bernhardt, J{\"o}rg and Riedel, Katharina and Cernava, Tomislav and Berg, Gabriele}, title = {Trade-off for survival}, series = {Environment international : a journal of science, technology, health, monitoring and policy}, volume = {168}, journal = {Environment international : a journal of science, technology, health, monitoring and policy}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {1873-6750}, doi = {10.1016/j.envint.2022.107474}, pages = {13}, year = {2022}, abstract = {The environmental micmbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native micmbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments.}, language = {en} } @article{PawlakNoetzelDragoetal.2022, author = {Pawlak, Julia and Noetzel, Dominique Christian and Drago, Claudia and Weithoff, Guntram}, title = {Assessing the toxicity of polystyrene beads and silica particles on the microconsumer Brachionus calyciflorus at different timescales}, series = {Frontiers in Environmental Science}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2296-665X}, doi = {10.3389/fenvs.2022.955425}, pages = {1 -- 11}, year = {2022}, abstract = {Environmental pollution by microplastics has become a severe problem in terrestrial and aquatic ecosystems and, according to actual prognoses, problems will further increase in the future. Therefore, assessing and quantifying the risk for the biota is crucial. Standardized short-term toxicological procedures as well as methods quantifying potential toxic effects over the whole life span of an animal are required. We studied the effect of the microplastic polystyrene on the survival and reproduction of a common freshwater invertebrate, the rotifer Brachionus calyciflorus, at different timescales. We used pristine polystyrene spheres of 1, 3, and 6 µm diameter and fed them to the animals together with food algae in different ratios ranging from 0 to 50\% nonfood particles. As a particle control, we used silica to distinguish between a pure particle effect and a plastic effect. After 24 h, no toxic effect was found, neither with polystyrene nor with silica. After 96 h, a toxic effect was detectable for both particle types. The size of the particles played a negligible role. Studying the long-term effect by using life table experiments, we found a reduced reproduction when the animals were fed with 3 µm spheres together with similar-sized food algae. We conclude that the fitness reduction is mainly driven by the dilution of food by the nonfood particles rather than by a direct toxic effect.}, language = {en} } @article{JaenickeGoddardSteinetal.2022, author = {J{\"a}nicke, Clemens and Goddard, Adam and Stein, Susanne and Steinmann, Horst-Henning and Lakes, Tobia and Nendel, Claas and M{\"u}ller, Daniel}, title = {Field-level land-use data reveal heterogeneous crop sequences with distinct regional differences in Germany}, series = {European journal of agronomy}, volume = {141}, journal = {European journal of agronomy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1161-0301}, doi = {10.1016/j.eja.2022.126632}, pages = {12}, year = {2022}, abstract = {Crop cultivation intensifies globally, which can jeopardize biodiversity and the resilience of cropping systems. We investigate changes in crop rotations as one intensification metric for half of the croplands in Germany with annual field-level land-use data from 2005 to 2018. We proxy crop rotations with crop sequences and compare how these sequences changed among three seven-year periods. The results reveal an overall high diversity of crop sequences in Germany. Half of the cropland has crop sequences with four or more crops within a seven-year period, while continuous cultivation of the same crop is present on only 2\% of the cropland. Larger farms tend to have more diverse crop sequences and organic farms have lower shares of cereal crops. In three federal states, crop rotations became less structurally diverse over time, i.e. the number of crops and the number of changes between crops decreased. In one state, structural diversity increased and the proportion of monocropping decreased. The functional diversity of the crop sequences, which measures the share of winter and spring crops as well as the share of leaf and cereal crops per sequence, remained largely stable. Trends towards cereal-or leaf -crop dominated sequences varied between the states, and no clear overall dynamic could be observed. However, the share of winter crops per sequence decreased in all four federal states. Quantifying the dynamics of crop sequences at the field level is an important metric of land-use intensity and can reveal the patterns of land-use intensification.}, language = {en} } @article{SchweigelBatsiosMuellerTaubenbergeretal.2022, author = {Schweigel, Ulrike and Batsios, Petros and M{\"u}ller-Taubenberger, Annette and Gr{\"a}f, Ralph and Grafe, Marianne}, title = {Dictyostelium spastin is involved in nuclear envelope dynamics during semi-closed mitosis}, series = {Nucleus}, volume = {13}, journal = {Nucleus}, number = {1}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1949-1034}, doi = {10.1080/19491034.2022.2047289}, pages = {144 -- 154}, year = {2022}, abstract = {Dictyostelium amoebae perform a semi-closed mitosis, in which the nuclear envelope is fenestrated at the insertion sites of the mitotic centrosomes and around the central spindle during karyokinesis. During late telophase the centrosome relocates to the cytoplasmic side of the nucleus, the central spindle disassembles and the nuclear fenestrae become closed. Our data indicate that Dictyostelium spastin (DdSpastin) is a microtubule-binding and severing type I membrane protein that plays a role in this process. Its mitotic localization is in agreement with a requirement for the removal of microtubules that would hinder closure of the fenestrae. Furthermore, DdSpastin interacts with the HeH/ LEM-family protein Src1 in BioID analyses as well as the inner nuclear membrane protein Sun1, and shows subcellular co-localizations with Src1, Sun1, the ESCRT component CHMP7 and the IST1-like protein filactin, suggesting that the principal pathway of mitotic nuclear envelope remodeling is conserved between animals and Dictyostelium amoebae.}, language = {en} } @article{TebbeOttensmannHavensteinetal.2022, author = {Tebbe, Jonas and Ottensmann, Meinolf and Havenstein, Katja and Efstratiou, Artemis and Lenz, Tobias L. and Caspers, Barbara A. and Forcada, Jaume and Tiedemann, Ralph and Hoffman, Joseph}, title = {Intronic primers reveal unexpectedly high major histocompatibility complex diversity in Antarctic fur seals}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-21658-7}, pages = {14}, year = {2022}, abstract = {The major histocompatibility complex (MHC) is a group of genes comprising one of the most important components of the vertebrate immune system. Consequently, there has been much interest in characterising MHC variation and its relationship with fitness in a variety of species. Due to the exceptional polymorphism of MHC genes, careful PCR primer design is crucial for capturing all of the allelic variation present in a given species. We therefore developed intronic primers to amplify the full-length 267 bp protein-coding sequence of the MHC class II DQB exon 2 in the Antarctic fur seal. We then characterised patterns of MHC variation among mother-offspring pairs from two breeding colonies and detected 19 alleles among 771 clone sequences from 56 individuals. The distribution of alleles within and among individuals was consistent with a single-copy, classical DQB locus showing Mendelian inheritance. Amino acid similarity at the MHC was significantly associated with genome-wide relatedness, but no relationship was found between MHC heterozygosity and genome-wide heterozygosity. Finally, allelic diversity was several times higher than reported by a previous study based on partial exon sequences. This difference appears to be related to allele-specific amplification bias, implying that primer design can strongly impact the inference of MHC diversity.}, language = {en} }