@article{PrueferWengerBieretal.2022, author = {Pr{\"u}fer, Mareike and Wenger, Christian and Bier, Frank Fabian and Laux, Eva-Maria and H{\"o}lzel, Ralph}, title = {Activity of AC electrokinetically immobilized horseradish peroxidase}, series = {Electrophoresis : microfluidics, nanoanalysis \& proteomics}, journal = {Electrophoresis : microfluidics, nanoanalysis \& proteomics}, publisher = {Wiley}, address = {Hoboken}, issn = {0173-0835}, doi = {10.1002/elps.202200073}, pages = {1920 -- 1933}, year = {2022}, abstract = {Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45\% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.}, language = {en} } @article{ReegStriglJeltsch2022, author = {Reeg, Jette and Strigl, Lea and Jeltsch, Florian}, title = {Agricultural buffer zone thresholds to safeguard functional bee diversity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, edition = {3}, publisher = {Wiley Online Library}, address = {Hoboken, New Jersey, USA}, issn = {2045-7758}, doi = {10.1002/ece3.8748}, pages = {1 -- 17}, year = {2022}, abstract = {Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25\% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75\% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.}, language = {en} } @article{SchlaegelMaedlow2022, author = {Schl{\"a}gel, Ulrike E. and M{\"a}dlow, Wolfgang}, title = {All-season space use by non-native resident Mandarin Ducks (Aix galericulata) in northeastern Germany}, series = {Journal of ornithology / publ. by Deutsche Ornithologen-Gesellschaft}, volume = {163}, journal = {Journal of ornithology / publ. by Deutsche Ornithologen-Gesellschaft}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {2193-7192}, doi = {10.1007/s10336-021-01932-7}, pages = {71 -- 82}, year = {2022}, abstract = {Patterns of space use are often subject to large temporal and individual-level variation, due to seasonality in behaviour and environmental conditions as well as age- or sex-specific needs. Especially in temperate regions, seasonality likely influences space use even in non-migratory birds. In waterfowl of the family Anatidae, however, few studies have analyzed space use of the same individuals across the full annual cycle. We used a resident population of Mandarin Ducks (Aix galericulata) in northeast Germany to study their year-round space use in relation to season, sex, and age. We marked 172 birds with colour rings and surveyed relevant water bodies for re-encounters for several years. As space-use patterns we derived home ranges from minimum convex polygons and the number of water bodies used by individual birds. Our analysis revealed that individuals shifted their space use between seasons, in particular extending their home ranges during the non-breeding season. Between years, in contrast, birds tended to show season-specific site fidelity. Sex differences were apparent during both breeding and non-breeding season, males consistently having larger home ranges and using slightly more water bodies. No difference was found between first-year and adult birds. Our study demonstrates that mark-resighting can provide valuable information about space use in species with suitable behaviour and readily accessible habitat. In such cases, it may be a valid alternative to more expensive GPS-tracking or short-term manual radio telemetry, particularly within citizen-science projects.}, language = {en} } @article{HussJuddKoperetal.2022, author = {Huß, Sebastian and Judd, Rika Siedah and Koper, Kaan and Maeda, Hiroshi A. and Nikoloski, Zoran}, title = {An automated workflow that generates atom mappings for large-scale metabolic models and its application to Arabidopsis thaliana}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0960-7412}, doi = {10.1111/tpj.15903}, pages = {1486 -- 1500}, year = {2022}, abstract = {Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating N-15 isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future N-15-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.}, language = {en} } @article{LucenaPerezBazzicalupoPaijmansetal.2022, author = {Lucena-Perez, Mar{\´i}a and Bazzicalupo, Enrico and Paijmans, Johanna and Kleinman-Ruiz, Daniel and Dal{\´e}n, Love and Hofreiter, Michael and Delibes, Miguel and Clavero, Miguel and Godoy, Jos{\´e} A.}, title = {Ancient genome provides insights into the history of Eurasian lynx in Iberia and Western Europe}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {285}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107518}, pages = {9}, year = {2022}, abstract = {The Eurasian lynx (Lynx lynx) is one of the most widely distributed felids in the world. However, most of its populations started to decline a few millennia ago. Historical declines have been especially severe in Europe, and particularly in Western Europe, from where the species disappeared in the last few centuries. Here, we analyze the genome of an Eurasian lynx inhabiting the Iberian Peninsula 2500 ya, to gain insights into the phylogeographic position and genetic status of this extinct population. Also, we contextualize previous ancient data in the light of new phylogeographic studies of the species. Our results suggest that the Iberian population is part of an extinct European lineage closely related to the current Carpathian-Baltic lineages. Also, this sample holds the lowest diversity reported for the species so far, and similar to that of the highly endangered Iberian lynx. A combination of historical factors, such as a founder effect while colonizing the peninsula, together with intensified human impacts during the Holocene in the Cantabrian strip, could have led to a genetic impoverishment of the population and precipitated its extinction. Mitogenomic lineages distribution in space and time support the long-term coexistence of several lineages of Eurasian lynx in Western Europe with fluctuating ranges. While mitochondrial sequences related to the lineages currently found in Balkans and Caucasus were predominant during the Pleistocene, those more closely related to the lineage currently distributed in Central Europe prevailed during the Holocene. The use of ancient genomics has proven to be a useful tool to understand the biogeographic pattern of the Eurasian lynx in the past.}, language = {en} } @article{IlicicWoodhouseKarstenetal.2022, author = {Ilicic, Doris and Woodhouse, Jason Nicholas and Karsten, Ulf and Zimmermann, Jonas and Wichard, Thomas and Quartino, Maria Liliana and Campana, Gabriela Laura and Livenets, Alexandra and Van den Wyngaert, Silke and Grossart, Hans-Peter}, title = {Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, number = {13}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.805694}, pages = {12}, year = {2022}, abstract = {Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.}, language = {en} } @article{BapolisiKielbBekiretal.2022, author = {Bapolisi, Alain Murhimalika and Kielb, Patrycja and Bekir, Marek and Lehnen, Anne-Catherine and Radon, Christin and Laroque, Sophie and Wendler, Petra and M{\"u}ller-Werkmeister, Henrike and Hartlieb, Matthias}, title = {Antimicrobial polymers of linear and bottlebrush architecture}, series = {Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation}, volume = {43}, journal = {Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3927}, doi = {10.1002/marc.202200288}, pages = {14}, year = {2022}, abstract = {Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs.}, language = {en} } @article{GhafarianWielandLuettschwageretal.2022, author = {Ghafarian, Fatemeh and Wieland, Ralf and L{\"u}ttschwager, Dietmar and Nendel, Claas}, title = {Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data}, series = {Environmental modelling \& software with environment data news}, volume = {156}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2022.105466}, pages = {11}, year = {2022}, abstract = {Forest microclimate can buffer biotic responses to summer heat waves, which are expected to become more extreme under climate warming. Prediction of forest microclimate is limited because meteorological observation standards seldom include situations inside forests. We use eXtreme Gradient Boosting - a Machine Learning technique - to predict the microclimate of forest sites in Brandenburg, Germany, using seasonal data comprising weather features. The analysis was amended by applying a SHapley Additive explanation to show the interaction effect of variables and individualised feature attributions. We evaluate model performance in comparison to artificial neural networks, random forest, support vector machine, and multi-linear regression. After implementing a feature selection, an ensemble approach was applied to combine individual models for each forest and improve robustness over a given single prediction model. The resulting model can be applied to translate climate change scenarios into temperatures inside forests to assess temperature-related ecosystem services provided by forests.}, language = {en} } @article{VatovaRubinGrossartetal.2022, author = {Vatova, Mariyana and Rubin, Conrad and Grossart, Hans-Peter and Goncalves, Susana C. and Schmidt, Susanne I. and Jarić, Ivan}, title = {Aquatic fungi: largely neglected targets for conservation}, series = {Frontiers in ecology and the environment}, volume = {20}, journal = {Frontiers in ecology and the environment}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1540-9295}, doi = {10.1002/fee.2495}, pages = {207 -- 209}, year = {2022}, language = {en} } @article{RadosavljevicLantuitKnoblauchetal.2022, author = {Radosavljevic, Boris and Lantuit, Hugues and Knoblauch, Christian and Couture, Nicole and Herzschuh, Ulrike and Fritz, Michael}, title = {Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada}, series = {Journal of marine science and engineering}, volume = {10}, journal = {Journal of marine science and engineering}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2077-1312}, doi = {10.3390/jmse10111589}, pages = {18}, year = {2022}, abstract = {Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.\%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area.}, language = {en} }