@misc{DimigenSommerHohlfeldetal.2011, author = {Dimigen, Olaf and Sommer, Werner and Hohlfeld, Annette and Jacobs, Arthur M. and Kliegl, Reinhold}, title = {Coregistration of eye movements and EEG in natural reading analyses and review}, series = {Journal of experimental psychology : General}, volume = {140}, journal = {Journal of experimental psychology : General}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-3445}, doi = {10.1037/a0023885}, pages = {552 -- 572}, year = {2011}, abstract = {Brain-electric correlates of reading have traditionally been studied with word-by-word presentation, a condition that eliminates important aspects of the normal reading process and precludes direct comparisons between neural activity and oculomotor behavior. In the present study, we investigated effects of word predictability on eye movements (EM) and fixation-related brain potentials (FRPs) during natural sentence reading. Electroencephalogram (EEG) and EM (via video-based eye tracking) were recorded simultaneously while subjects read heterogeneous German sentences, moving their eyes freely over the text. FRPs were time-locked to first-pass reading fixations and analyzed according to the cloze probability of the currently fixated word. We replicated robust effects of word predictability on EMs and the N400 component in FRPs. The data were then used to model the relation among fixation duration, gaze duration, and N400 amplitude, and to trace the time course of EEG effects relative to effects in EM behavior. In an extended Methodological Discussion section, we review 4 technical and data-analytical problems that need to be addressed when FRPs are recorded in free-viewing situations (such as reading, visual search, or scene perception) and propose solutions. Results suggest that EEG recordings during normal vision are feasible and useful to consolidate findings from EEG and eye-tracking studies.}, language = {en} } @phdthesis{Metzner2015, author = {Metzner, Paul-Philipp}, title = {Eye movements and brain responses in natural reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82806}, school = {Universit{\"a}t Potsdam}, pages = {xv, 160}, year = {2015}, abstract = {Intuitively, it is clear that neural processes and eye movements in reading are closely connected, but only few studies have investigated both signals simultaneously. Instead, the usual approach is to record them in separate experiments and to subsequently consolidate the results. However, studies using this approach have shown that it is feasible to coregister eye movements and EEG in natural reading and contributed greatly to the understanding of oculomotor processes in reading. The present thesis builds upon that work, assessing to what extent coregistration can be helpful for sentence processing research. In the first study, we explore how well coregistration is suited to study subtle effects common to psycholinguistic experiments by investigating the effect of distance on dependency resolution. The results demonstrate that researchers must improve the signal-to-noise ratio to uncover more subdued effects in coregistration. In the second study, we compare oscillatory responses in different presentation modes. Using robust effects from world knowledge violations, we show that the generation and retrieval of memory traces may differ between natural reading and word-by-word presentation. In the third study, we bridge the gap between our knowledge of behavioral and neural responses to integration difficulties in reading by analyzing the EEG in the context of regressive saccades. We find the P600, a neural indicator of recovery processes, when readers make a regressive saccade in response to integration difficulties. The results in the present thesis demonstrate that coregistration can be a useful tool for the study of sentence processing. However, they also show that it may not be suitable for some questions, especially if they involve subtle effects.}, language = {en} } @phdthesis{Poltrock2010, author = {Poltrock, Silvana}, title = {About the relation between implicit Theory of Mind \& the comprehension of complement sentences}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52293}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Previous studies on the relation between language and social cognition have shown that children's mastery of embedded sentential complements plays a causal role for the development of a Theory of Mind (ToM). Children start to succeed on complementation tasks in which they are required to report the content of an embedded clause in the second half of the fourth year. Traditional ToM tasks test the child's ability to predict that a person who is holding a false belief (FB) about a situation will act "falsely". In these task, children do not represent FBs until the age of 4 years. According the linguistic determinism hypothesis, only the unique syntax of complement sentences provides the format for representing FBs. However, experiments measuring children's looking behavior instead of their explicit predictions provided evidence that already 2-year olds possess an implicit ToM. This dissertation examined the question of whether there is an interrelation also between implicit ToM and the comprehension of complement sentences in typically developing German preschoolers. Two studies were conducted. In a correlational study (Study 1 ), 3-year-old children's performance on a traditional (explicit) FB task, on an implicit FB task and on language tasks measuring children's comprehension of tensed sentential complements were collected and tested for their interdependence. Eye-tracking methodology was used to assess implicit ToM by measuring participants' spontaneous anticipatory eye movements while they were watching FB movies. Two central findings emerged. First, predictive looking (implicit ToM) was not correlated with complement mastery, although both measures were associated with explicit FB task performance. This pattern of results suggests that explicit, but not implicit ToM is language dependent. Second, as a group, 3-year-olds did not display implicit FB understanding. That is, previous findings on a precocious reasoning ability could not be replicated. This indicates that the characteristics of predictive looking tasks play a role for the elicitation of implicit FB understanding as the current task was completely nonverbal and as complex as traditional FB tasks. Study 2 took a methodological approach by investigating whether children display an earlier comprehension of sentential complements when using the same means of measurement as used in experimental tasks tapping implicit ToM, namely anticipatory looking. Two experiments were conducted. 3-year-olds were confronted either with a complement sentence expressing the protagonist's FB (Exp. 1) or with a complex sentence expressing the protagonist's belief without giving any information about the truth/ falsity of the belief (Exp. 2). Afterwards, their expectations about the protagonist's future behavior were measured. Overall, implicit measures reveal no considerably earlier understanding of sentential complementation. Whereas 3-year-olds did not display a comprehension of complex sentences if these embedded a false proposition, children from 3;9 years on were proficient in processing complement sentences if the truth value of the embedded proposition could not be evaluated. This pattern of results suggests that (1) the linguistic expression of a person's FB does not elicit implicit FB understanding and that (2) the assessment of the purely syntactic understanding of complement sentences is affected by competing reality information. In conclusion, this dissertation found no evidence that the implicit ToM is related to the comprehension of sentential complementation. The findings suggest that implicit ToM might be based on nonlinguistic processes. Results are discussed in the light of recently proposed dual-process models that assume two cognitive mechanisms that account for different levels of ToM task performance.}, language = {en} }