@misc{BatsiosRenBaumannetal.2016, author = {Batsios, Petros and Ren, Xiang and Baumann, Otto and Larochelle, Denis A. and Gr{\"a}f, Ralph}, title = {Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97033}, pages = {15}, year = {2016}, abstract = {The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11-646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.}, language = {en} } @article{BatsiosRenBaumannetal.2016, author = {Batsios, Petros and Ren, Xiang and Baumann, Otto and Larochelle, Denis A. and Gr{\"a}f, Ralph}, title = {Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81}, series = {Cells}, volume = {5}, journal = {Cells}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells5010013}, year = {2016}, abstract = {The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11-646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.}, language = {en} } @article{HartmannWaiHuetal.2016, author = {Hartmann, Bianca and Wai, Timothy and Hu, Hao and MacVicar, Thomas and Musante, Luciana and Fischer-Zirnsak, Bj{\"o}rn and Stenzel, Werner and Gr{\"a}f, Ralph and van den Heuvel, Lambert and Ropers, Hans-Hilger and Wienker, Thomas F. and H{\"u}bner, Christoph and Langer, Thomas and Kaindl, Angela M.}, title = {Homozygous YME1L1 Mutation Causes Mitochondriopathy with Optic Atrophy and Mitochondrial Network Fragmentation}, series = {eLife}, volume = {5}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.16078}, pages = {1156 -- 1165}, year = {2016}, abstract = {Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.}, language = {en} } @article{PutzlerMeyerGraef2016, author = {Putzler, Sascha and Meyer, Irene and Gr{\"a}f, Ralph}, title = {CP91 is a component of the Dictyostelium centrosome involved in centrosome biogenesis}, series = {European journal of cell biology}, volume = {95}, journal = {European journal of cell biology}, publisher = {Royal Society}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.ejcb.2016.03.001}, pages = {124 -- 135}, year = {2016}, abstract = {The Dictyostelium centrosome is a model for acentriolar centrosomes and it consists of a three-layered core structure surrounded by a corona harboring microtubule nucleation complexes. Its core structure duplicates once per cell cycle at the G2/M transition. Through proteomic analysis of isolated centrosomes we have identified CP91, a 91-kDa coiled coil protein that was localized at the centrosomal core structure. While GFP-CP91 showed almost no mobility in FRAP experiments during interphase, both GFP-CP91 and endogenous CP91 dissociated during mitosis and were absent from spindle poles from late prophase to anaphase. Since this behavior correlates with the disappearance of the central layer upon centrosome duplication, CP91 is a putative component of this layer. When expressed as GFP-fusions, CP91 fragments corresponding to the central coiled coil domain and the preceding N-terminal part (GFP-CP91cc and GFP-CP91N, respectively) also localized to the centrosome but did not show the mitotic redistribution of the full length protein suggesting a regulatory role of the C-terminal domain. Expression of all GFP-fusion proteins suppressed expression of endogenous CP91 and elicited supernumerary centrosomes. This was also very prominent upon depletion of CP91 by RNAi. Additionally, CP91-RNAi cells exhibited heavily increased ploidy due to severe defects in chromosome segregation along with increased cell size and defects in the abscission process during cytokinesis. Our results indicate that CP91 is a central centrosomal core component required for centrosomal integrity, proper centrosome biogenesis and, independently, for abscission during cytokinesis. (c) 2016 Elsevier GmbH. All rights reserved.}, language = {en} }