@article{TockhornSutterCruzBournazouetal.2022, author = {Tockhorn, Philipp and Sutter, Johannes and Cruz Bournazou, Alexandros and Wagner, Philipp and J{\"a}ger, Klaus and Yoo, Danbi and Lang, Felix and Grischek, Max and Li, Bor and Li, Jinzhao and Shargaieva, Oleksandra and Unger, Eva and Al-Ashouri, Amran and K{\"o}hnen, Eike and Stolterfoht, Martin and Neher, Dieter and Schlatmann, Rutger and Rech, Bernd and Stannowski, Bernd and Albrecht, Steve and Becker, Christiane}, title = {Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells}, series = {Nature nanotechnology}, volume = {17}, journal = {Nature nanotechnology}, number = {11}, publisher = {Nature Publishing Group}, address = {London [u.a.]}, issn = {1748-3387}, doi = {10.1038/s41565-022-01228-8}, pages = {1214 -- 1221}, year = {2022}, abstract = {Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50\% to 95\%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80\%.}, language = {en} } @article{BraungerMundtWolffetal.2018, author = {Braunger, Steffen and Mundt, Laura E. and Wolff, Christian Michael and Mews, Mathias and Rehermann, Carolin and Jost, Marko and Tejada, Alvaro and Eisenhauer, David and Becker, Christiane and Andres Guerra, Jorge and Unger, Eva and Korte, Lars and Neher, Dieter and Schubert, Martin C. and Rech, Bernd and Albrecht, Steve}, title = {Cs(x)FA(1-x)Pb(l(1-y)Br(y))(3) Perovskite Compositions}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b06459}, pages = {17123 -- 17135}, year = {2018}, abstract = {We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium-based Cs(x)FA(1-y)Pb(I1-yBry)(3) perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br contents, the perovskite precursor solution concentration and the spin-coating procedure, the occurrence and characteristics of the wrinkle-shaped morphology can be tailored systematically. Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3) perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar cells (PSCs) with indium-doped tin oxide/NiOx/perovskite/C-60/bathocuproine/Cu architecture resulted in up to 15.3 and 17.0\% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in the local grain size, whereas there is no indication for compositional demixing in the films. We show that the perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps us to better understand film formation and to further improve the efficiency of PSCs with widely used mixed-perovskite compositions.}, language = {en} }