@article{MillerCionideGrijsetal.2022, author = {Miller, Amy E. and Cioni, Maria-Rosa L. and de Grijs, Richard and Sun, Ning-Chen and Bell, Cameron P. M. and Choudhury, Samyaday and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Petr-Gotzens, Monika and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {The VMC survey - XLVII. Turbulence-controlled hierarchical star formation in the large magellanic cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac508}, pages = {1196 -- 1213}, year = {2022}, abstract = {We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across similar to 120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44 +/- 0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50 +/- 0.10 and 1.61 +/- 0.20, respectively. We find that the surface density distribution is well represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 to 700 pc.}, language = {en} } @article{GriggioBedinRaddietal.2022, author = {Griggio, Massimo and Bedin, Luigi R. and Raddi, Roberto and Reindl, Nicole and Tomasella, Lina and Scalco, M. and Salaris, M. and Cassisi, S. and Ochner, P. and Ciroi, S. and Rosati, P. and Nardiello, Domenico and Anderson, J. and Libralato, Mattia and Bellini, A. and Vallenari, A. and Spina, L. and Pedani, M.}, title = {Astro-photometric study of M37 with Gaia and wide-field ugi-imaging}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1920}, pages = {1841 -- 1853}, year = {2022}, abstract = {We present an astrometric and photometric wide-field study of the Galactic open star cluster M37 (NGC 2099). The studied field was observed with ground-based images covering a region of about four square degrees in the Sloan-like filters ugi. We exploited the Gaia catalogue to calibrate the geometric distortion of the large field mosaics, developing software routines that can be also applied to other wide-field instruments. The data are used to identify the hottest white dwarf (WD) member candidates of M37. Thanks to the Gaia EDR3 exquisite astrometry we identified seven such WD candidates, one of which, besides being a high-probability astrometric member, is the putative central star of a planetary nebula. To our knowledge, this is a unique object in an open cluster, and we have obtained follow-up low-resolution spectra that are used for a qualitative characterization of this young WD. Finally, we publicly release a three-colour atlas and a catalogue of the sources in the field of view, which represents a complement of existing material.}, language = {en} } @article{PelisoliDorschHeberetal.2022, author = {Pelisoli, Ingrid and Dorsch, Matti and Heber, Ulrich and G{\"a}nsicke, Boris and Geier, Stephan and Kupfer, Thomas and Nemeth, Peter and Scaringi, Simone and Schaffenroth, Veronika}, title = {Discovery and analysis of three magnetic hot subdwarf stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1069}, pages = {2496 -- 2510}, year = {2022}, abstract = {Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300-500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of 0.147(+0.143)(-0.047) per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50-150 MG, assuming magnetic flux conservation.}, language = {en} } @article{BornJohanssonLeitneretal.2022, author = {Born, Artur and Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Kuehn, Danilo and Martensson, Nils and F{\"o}hlisch, Alexander}, title = {The degree of electron itinerancy and shell closing in the core-ionized state of transition metals probed by Auger-photoelectron coincidence spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02477b}, pages = {19218 -- 19222}, year = {2022}, abstract = {Auger-photoelectron coincidence spectroscopy (APECS) has been used to examine the electron correlation and itinerance effects in transition metals Cu, Ni and Co. It is shown that the LVV Auger, in coincidence with 2p photoelectrons, spectra can be represented using atomic multiplet positions if the 3d-shell is localized (atomic-like) and with a self-convoluted valence band for band-like (itinerant) materials as explained using the Cini-Sawatzky model. For transition metals, the 3d band changes from band-like to localized with increasing atomic number, with the possibility of a mixed behavior. Our result shows that the LVV spectra of Cu can be represented by atomic multiplet calculations, those of Co resemble the self-convolution of the valence band and those of Ni are a mixture of both, consistent with the Cini-Sawatzky model.}, language = {en} } @article{NeunteufelPreeceKruckowetal.2022, author = {Neunteufel, Patrick and Preece, H. and Kruckow, Matthias U. and Geier, Stephan and Hamers, Adrian S. and Justham, S. and Podsiadlowski, Philipp}, title = {Properties and applications of a predicted population of runaway He-sdO/B stars ejected from single degenerate He-donor SNe}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {663}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142864}, pages = {26}, year = {2022}, abstract = {Context. Thermonuclear supernovae (SNe), a subset of which are the highly important SNe of Type Ia and Iax, are relatively poorly understood phenomena. One of the more promising scenarios leading up to the creation of a thermonuclear SN involves accretion of helium-rich material from a binary companion. Following the SN, the binary companion is then ejected from the location of the progenitor binary at velocities possibly large enough to unbind it from the gravitational potential of the Galaxy. Ejected companion stars should form a detectable population, if their production mechanism is not exceedingly rare. Aims. This study builds on previous works, producing the most extensive prediction of the properties of such a hypothetical population to date, taking both Chandrasekhar and non-Chandrasekhar mass events into account. These results are then used to define criteria for membership of this population and characterise putative subpopulations. Methods. This study contains 6 x 10(6) individual ejection trajectories out of the Galactic plane calculated with the stellar kinematics framework SHyRT, which are analysed with regard to their bulk observational properties. These are then put into context with the only previously identified population member US 708 and applied to a number of other possible candidate objects. Results. We find that two additional previously observed objects possess properties to warrant a designation as candidate objects. Characterisation of these object with respect to the predicted population finds all of them to be extreme in at least one astrometric observable. Higher mass ( >0 :7 M-circle dot) objects should be over-represented in the observationally accessible volume, with the ratio of bound to unbound objects being an accessible observable for the determination of the dominant terminal accretor mass. We find that current observations of runaway candidates within 10 kpc support a Galactic SN rate of the order of similar to 3 x 10(-7) yr(-1) to similar to 2 x 10(-6) yr(-1), three orders of magnitude below the inferred Galactic SN Ia rate and two orders of magnitude below the formation rate of predicted He-donor progenitors. Conclusions. The number of currently observed population members suggests that the He-donor scenario, as suspected before, is not a dominant contributor to the number of observed SNe Ia. However, even at the low event rate suggested, we find that the majority of possibly detectable population members is still undetected. The extreme nature of current population members suggests that a still larger number of objects has simply evaded detection up to this point, hinting at a higher contribution than is currently supported by observation.}, language = {en} } @article{StojkoskiSandevKocarevetal.2022, author = {Stojkoski, Viktor and Sandev, Trifce and Kocarev, Ljupco and Pal, Arnab}, title = {Autocorrelation functions and ergodicity in diffusion with stochastic resetting}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac4ce9}, pages = {22}, year = {2022}, abstract = {Diffusion with stochastic resetting is a paradigm of resetting processes. Standard renewal or master equation approach are typically used to study steady state and other transport properties such as average, mean squared displacement etc. What remains less explored is the two time point correlation functions whose evaluation is often daunting since it requires the implementation of the exact time dependent probability density functions of the resetting processes which are unknown for most of the problems. We adopt a different approach that allows us to write a stochastic solution for a single trajectory undergoing resetting. Moments and the autocorrelation functions between any two times along the trajectory can then be computed directly using the laws of total expectation. Estimation of autocorrelation functions turns out to be pivotal for investigating the ergodic properties of various observables for this canonical model. In particular, we investigate two observables (i) sample mean which is widely used in economics and (ii) time-averaged-mean-squared-displacement (TAMSD) which is of acute interest in physics. We find that both diffusion and drift-diffusion processes with resetting are ergodic at the mean level unlike their reset-free counterparts. In contrast, resetting renders ergodicity breaking in the TAMSD while both the stochastic processes are ergodic when resetting is absent. We quantify these behaviors with detailed analytical study and corroborate with extensive numerical simulations. Our results can be verified in experimental set-ups that can track single particle trajectories and thus have strong implications in understanding the physics of resetting.}, language = {en} } @article{LongNiCaoetal.2022, author = {Long, Minyi and Ni, Binbin and Cao, Xing and Gu, Xudong and Kollmann, Peter and Luo, Qiong and Zhou, Ruoxian and Guo, Yingjie and Guo, Deyu and Shprits, Yuri Y.}, title = {Losses of radiation belt energetic particles by encounters with four of the inner Moons of Jupiter}, series = {Journal of geophysical research, Planets}, volume = {127}, journal = {Journal of geophysical research, Planets}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9097}, doi = {10.1029/2021JE007050}, pages = {13}, year = {2022}, abstract = {Based on an improved model of the moon absorption of Jovian radiation belt particles, we investigate quantitatively and comprehensively the absorption probabilities and particle lifetimes due to encounters with four of the inner moons of Jupiter (Amalthea, Thebe, Io, and Europa) inside L < 10. Our results demonstrate that the resultant average lifetimes of energetic protons and electrons vary dramatically between similar to 0.1 days and well above 1,000 days, showing a strong dependence on the particle equatorial pitch angle, kinetic energy and moon orbit. The average lifetimes of energetic protons and electrons against moon absorption are shortest for Io (i.e., similar to 0.1-10 days) and longest for Thebe (i.e., up to thousands of days), with the lifetimes in between for Europa and Amalthea. Due to the diploe tilt angle absorption effect, the average lifetimes of energetic protons and electrons vary markedly below and above alpha eq \${\alpha }_{\mathrm{e}\mathrm{q}}\$ = 67 degrees. Overall, the average electron lifetimes exhibit weak pitch angle dependence, but the average proton lifetimes are strongly dependent on equatorial pitch angle. The average lifetimes of energetic protons decrease monotonically and substantially with the kinetic energy, but the average lifetimes of energetic electrons are roughly constant at energies 100 GeV) gamma-ray emission observed from a number of supernova remnants (SNRs) indicates particle acceleration to high energies at the shock of the remnants and a potentially significant contribution to Galactic cosmic rays. It is extremely difficult to determine whether protons (through hadronic interactions and subsequent pion decay) or electrons (through inverse Compton scattering on ambient photon fields) are responsible for this emission. For a successful diagnostic, a good understanding of the spatial and energy distribution of the underlying particle population is crucial. Most SNRs are created in core-collapse explosions and expand into the wind bubble of their progenitor stars. This circumstellar medium features a complex spatial distribution of gas and magnetic field which naturally strongly affects the resulting particle population. In this work, we conduct a detailed study of the spectro-spatial evolution of the electrons accelerated at the forward shock of core-collapse SNRs and their nonthermal radiation, using the RATPaC code that is designed for the time- and spatially dependent treatment of particle acceleration at SNR shocks. We focus on the impact of the spatially inhomogeneous magnetic field through the efficiency of diffusion and synchrotron cooling. It is demonstrated that the structure of the circumstellar magnetic field can leave strong signatures in the spectrum and morphology of the resulting nonthermal emission.}, language = {en} } @article{HerzogvonReppertPudelletal.2022, author = {Herzog, Marc and von Reppert, Alexander and Pudell, Jan-Etienne and Henkel, Carsten and Kronseder, Matthias and Back, Christian H. and Maznev, Alexei A. and Bargheer, Matias}, title = {Phonon-dominated energy transport in purely metallic heterostructures}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202206179}, pages = {8}, year = {2022}, abstract = {Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au.}, language = {en} } @article{YanXueJiangetal.2022, author = {Yan, Xiaoli and Xue, Zhike and Jiang, Chaowei and Priest, E. R. and Kliem, Bernhard and Yang, Liheng and Wang, Jincheng and Kong, Defang and Song, Yongliang and Feng, Xueshang and Liu, Zhong}, title = {Fast plasmoid-mediated reconnection in a solar flare}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-28269-w}, pages = {14}, year = {2022}, abstract = {Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices.}, language = {en} } @article{NeunteufelKruckowUGeieretal.2021, author = {Neunteufel, Patrick and Kruckow U., Matthias and Geier, Stephan and Hamers, Adrian S.}, title = {Predicted spatial and velocity distributions of ejected companion stars of helium accretion-induced thermonuclear supernovae}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {646}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202040022}, pages = {9}, year = {2021}, abstract = {Context Thermonuclear supernovae (SNe), a subset of which are the highly important SNe Type Ia, remain one of the more poorly understood phenomena known to modern astrophysics. In recent years, the single degenerate helium (He) donor channel, where a white dwarf star accretes He-rich matter from a hydrogen-depleted companion, has emerged as a promising candidate progenitor scenario for these events. An unresolved question in this scenario is the fate of the companion star, which would be evident as a runaway hot subdwarf O/B stars (He sdO/B) in the aftermath of the SN event. Aims Previous studies have shown that the kinematic properties of an ejected companion provide an opportunity to closer examine the properties of an SN progenitor system. However, with the number of observed objects not matching predictions by theory, the viability of this mechanism is called into question. In this study, we first synthesize a population of companion stars ejected by the aforementioned mechanism, taking into account predicted ejection velocities, the inferred population density in the Galactic mass distribution, and subsequent kinematics in the Galactic potential. We then discuss the astrometric properties of this population. Methods We present 10(6) individual ejection trajectories, which were numerically computed with a newly developed, lightweight simulation framework. Initial conditions were randomly generated, but weighted according to the Galactic mass density and ejection velocity data. We then discuss the bulk properties (Galactic distribution and observational parameters) of our sample. Results Our synthetic population reflects the Galactic mass distribution. A peak in the density distribution for close objects is expected in the direction of the Galactic centre. Higher mass runaways should outnumber lower mass ones. If the entire considered mass range is realised, the radial velocity distribution should show a peak at 500 km s(-1). If only close US 708 analogues are considered, there should be a peak at (similar to 750-850) km s(-1). In either case, US 708 should be a member of the high-velocity tail of the distribution. Conclusions We show that the puzzling lack of confirmed surviving companion stars of thermonuclear SNe, though possibly an observation-related selection effect, may indicate a selection against high mass donors in the SD He donor channel.}, language = {en} } @article{ProlSmirnovHoqueetal.2022, author = {Prol, Fabricio S. and Smirnov, Artem G. and Hoque, M. Mainul and Shprits, Yuri Y.}, title = {Combined model of topside ionosphere and plasmasphere derived from radio-occultation and Van Allen Probes data}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-13302-1}, pages = {11}, year = {2022}, abstract = {In the last years, electron density profile functions characterized by a linear dependence on the scale height showed good results when approximating the topside ionosphere. The performance above 800 km, however, is not yet well investigated. This study investigates the capability of the semi-Epstein functions to represent electron density profiles from the peak height up to 20,000 km. Electron density observations recorded by the Van Allen Probes were used to resolve the scale height dependence in the plasmasphere. It was found that the linear dependence of the scale height in the topside ionosphere cannot be directly used to extrapolate profiles above 800 km. We find that the dependence of scale heights on altitude is quadratic in the plasmasphere. A statistical model of the scale heights is therefore proposed. After combining the topside ionosphere and plasmasphere by a unified model, we have obtained good estimations not only in the profile shapes, but also in the Total Electron Content magnitude and distributions when compared to actual measurements from 2013, 2014, 2016 and 2017. Our investigation shows that Van Allen Probes can be merged to radio-occultation data to properly represent the upper ionosphere and plasmasphere by means of a semi-Epstein function.}, language = {en} } @article{ClarkWadgaonkarFreyseetal.2022, author = {Clark, Oliver J. and Wadgaonkar, Indrajit and Freyse, Friedrich and Springholz, Gunther and Battiato, Marco and Sanchez-Barriga, Jaime}, title = {Ultrafast thermalization pathways of excited bulk and surface states in the ferroelectric rashba semiconductor GeTe}, series = {Advanced materials}, volume = {34}, journal = {Advanced materials}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202200323}, pages = {13}, year = {2022}, abstract = {A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time- and angle-resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished: intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence: while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron-electron and electron-phonon interactions is responsible for the counterintuitive temperature dependence, with spin-selection constrained interband electron-electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron-electron and electron-phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronics.}, language = {en} } @article{GuoNiFuetal.2022, author = {Guo, Yingjie and Ni, Binbin and Fu, Song and Wang, Dedong and Shprits, Yuri Y. and Zhelavskaya, Irina and Feng, Minghang and Guo, Deyu}, title = {Identification of controlling geomagnetic and solar wind factors for magnetospheric chorus intensity using feature selection techniques}, series = {Journal of geophysical research : A, Space physics}, volume = {127}, journal = {Journal of geophysical research : A, Space physics}, number = {1}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9380}, doi = {10.1029/2021JA029926}, pages = {14}, year = {2022}, abstract = {Using over-5-year EMFISIS wave measurements from Van Allen Probes, we present a detailed survey to identify the controlling factors among the geomagnetic indices and solar wind parameters for the 1-min root mean square amplitudes of lower band chorus (LBC) and upper band chorus (UBC). A set of important features are automatically determined by feature selection techniques, namely, Random Forest and Maximum Relevancy Minimum Redundancy. Our analysis results indicate the AE index with zero-time-delay dominates the intensity evolution of LBC and UBC, consistent with the evidence that chorus waves prefer to occur and amplify during enhanced substorm periods. Regarding solar wind parameters, solar wind speed and IMF B-z are identified as the controlling factors for chorus wave intensity. Using the combination of all these important features, a predictive neural network model of chorus wave intensity is established to reconstruct the temporal variations of chorus wave intensity, for which application of Random Forest produces the overall best performance. Plain Language Summary Whistler mode chorus waves are electromagnetic waves observed in the low-density region near the geomagnetic equator outside the plasmapause. The dynamics of Earth's radiation belts are largely influenced by chorus waves owing to their dual contributions to both radiation belt electron acceleration and loss. In this study, we use feature selection techniques to identify the controlling geomagnetic and solar wind factors for magnetospheric chorus waves. Feature selection techniques implement the processes which can select the features most influential to the output. In this study, the inputs are geomagnetic indices and solar wind parameters and the output is the chorus wave intensity. The results indicate that AE index with zerotime delay dominates the chorus wave intensity. Furthermore, solar wind speed and IMF B-z are identified as the most important solar wind drivers for chorus wave intensity. On basis of the combination of all these important geomagnetic and solar wind controlling factors, we develop a neural network model of chorus wave intensity, and find that the model with the inputs identified using the Random Forest method produces the overall best performance.}, language = {en} } @article{DierckeKuckeinCauleyetal.2022, author = {Diercke, Andrea and Kuckein, Christoph and Cauley, Paul Wilson and Poppenh{\"a}ger, Katja and Alvarado-G{\´o}mez, Juli{\´a}n David and Dineva, Ekaterina Ivanova and Denker, Carsten}, title = {Solar H alpha excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202040091}, pages = {14}, year = {2022}, abstract = {Context The chromospheric H alpha spectral line is a strong line in the spectrum of the Sun and other stars. In the stellar regime, this spectral line is already used as a powerful tracer of stellar activity. For the Sun, other tracers, such as Ca II K, are typically used to monitor solar activity. Nonetheless, the Sun is observed constantly in H alpha with globally distributed ground-based full-disk imagers. Aims The aim of this study is to introduce the imaging H alpha excess and deficit as tracers of solar activity and compare them to other established indicators. Furthermore, we investigate whether the active region coverage fraction or the changing H alpha excess in the active regions dominates temporal variability in solar H alpha observations. Methods We used observations of full-disk H alpha filtergrams of the Chromospheric Telescope and morphological image processing techniques to extract the imaging H alpha excess and deficit, which were derived from the intensities above or below 10\% of the median intensity in the filtergrams, respectively. These thresholds allowed us to filter for bright features (plage regions) and dark absorption features (filaments and sunspots). In addition, the thresholds were used to calculate the mean intensity I-mean(E/D) for H alpha excess and deficit regions. We describe the evolution of the H alpha excess and deficit during Solar Cycle 24 and compare it to the mean intensity and other well established tracers: the relative sunspot number, the F10.7 cm radio flux, and the Mg II index. In particular, we tried to determine how constant the H alpha excess and number density of H alpha excess regions are between solar maximum and minimum. The number of pixels above or below the intensity thresholds were used to calculate the area coverage fraction of H alpha excess and deficit regions on the Sun, which was compared to the imaging H alpha excess and deficit and the respective mean intensities averaged for the length of one Carrington rotation. In addition, we present the H alpha excess and mean intensity variation of selected active regions during their disk passage in comparison to the number of pixels of H alpha excess regions. Results. The H alpha excess and deficit follow the behavior of the solar activity over the course of the cycle. They both peak around solar maximum, whereby the peak of the H alpha deficit is shortly after the solar maximum. Nonetheless, the correlation of the monthly averages of the H alpha excess and deficit is high with a Spearman correlation of rho =  0.91. The H alpha excess is closely correlated to the chromospheric Mg II index with a correlation of 0.95. The highest correlation of the H alpha deficit is found with the F10.7 cm radio flux, with a correlation of 0.89, due to their peaks after the solar activity maximum. Furthermore, the H alpha deficit reflects the cyclic behavior of polar crown filaments and their disappearance shortly before the solar maximum. We investigated the mean intensity distribution for H alpha excess regions for solar minimum and maximum. The shape of the distributions for solar minimum and maximum is very similar, but with different amplitudes. Furthermore, we found that the area coverage fraction of H alpha excess regions and the H alpha excess are strongly correlated with an overall Spearman correlation of 0.92. The correlation between the H alpha excess and the mean intensity of H alpha excess regions is 0.75. The correlation of the area coverage fraction and the mean intensity of H alpha excess regions is in general relatively low (rho = 0.45) and only for few active regions is this correlation above 0.7. The weak correlation between the area coverage fraction and mean intensity leaves us pessimistic that the degeneracy between these two quantities can be broken for the modeling of unresolved stellar surfaces.}, language = {en} } @article{PengSandevKocarev2021, author = {Peng, Junhao and Sandev, Trifce and Kocarev, Ljupco}, title = {First encounters on Bethe lattices and Cayley trees}, series = {Communications in nonlinear science \& numerical simulation}, volume = {95}, journal = {Communications in nonlinear science \& numerical simulation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1007-5704}, doi = {10.1016/j.cnsns.2020.105594}, pages = {15}, year = {2021}, abstract = {In this work we consider the first encounter problems between a fixed and/or mobile target A and a moving trap B on Bethe lattices and Cayley trees. The survival probabilities (SPs) of the target A on the both kinds of structures are considered analytically and compared. On Bethe lattices, the results show that the fixed target will still prolong its survival time, whereas, on Cayley trees, there are some initial positions where the target should move to prolong its survival time. The mean first encounter time (MFET) for mobile target A is evaluated numerically and compared with the mean first passage time (MFPT) for the fixed target A. Different initial settings are addressed and clear boundaries are obtained. These findings are helpful for optimizing the strategy to prolong the survival time of the target or to speed up the search process on Cayley trees, in relation to the target's movement and the initial position configuration of the two walkers. We also present a new method, which uses a small amount of memory, for simulating random walks on Cayley trees. (C) 2020 Elsevier B.V. All rights reserved.}, language = {en} } @article{KaaSternemannAppeletal.2022, author = {Kaa, Johannes M. and Sternemann, Christian and Appel, Karen and Cerantola, Valerio and Preston, Thomas R. and Albers, Christian and Elbers, Mirko and Libon, Lelia and Makita, Mikako and Pelka, Alexander and Petitgirard, Sylvain and Pl{\"u}ckthun, Christian and Roddatis, Vladimir and Sahle, Christoph J. and Spiekermann, Georg and Schmidt, Christian and Schreiber, Anja and Sakrowski, Robin and Tolan, Metin and Wilke, Max and Zastrau, Ulf and Konopkova, Zuzana}, title = {Structural and electron spin state changes in an x-ray heated iron carbonate system at the Earth's lower mantle pressures}, series = {Physical review research}, volume = {4}, journal = {Physical review research}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033042}, pages = {9}, year = {2022}, abstract = {The determination of the spin state of iron-bearing compounds at high pressure and temperature is crucial for our understanding of chemical and physical properties of the deep Earth. Studies on the relationship between the coordination of iron and its electronic spin structure in iron-bearing oxides, silicates, carbonates, iron alloys, and other minerals found in the Earth's mantle and core are scarce because of the technical challenges to simultaneously probe the sample at high pressures and temperatures. We used the unique properties of a pulsed and highly brilliant x-ray free electron laser (XFEL) beam at the High Energy Density (HED) instrument of the European XFEL to x-ray heat and probe samples contained in a diamond anvil cell. We heated and probed with the same x-ray pulse train and simultaneously measured x-ray emission and x-ray diffraction of an FeCO3 sample at a pressure of 51 GPa with up to melting temperatures. We collected spin state sensitive Fe K beta(1,3) fluorescence spectra and detected the sample's structural changes via diffraction, observing the inverse volume collapse across the spin transition. During x-ray heating, the carbonate transforms into orthorhombic Fe4C3O12 and iron oxides. Incipient melting was also observed. This approach to collect information about the electronic state and structural changes from samples contained in a diamond anvil cell at melting temperatures and above will considerably improve our understanding of the structure and dynamics of planetary and exoplanetary interiors.}, language = {en} } @article{KruseAltattanLauxetal.2022, author = {Kruse, Marlen and Altattan, Basma and Laux, Eva-Maria and Grasse, Nico and Heinig, Lars and M{\"o}ser, Christin and Smith, David M. and H{\"o}lzel, Ralph}, title = {Characterization of binding interactions of SARS-CoV-2 spike protein and DNA-peptide nanostructures}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-16914-9}, pages = {12}, year = {2022}, abstract = {Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models.}, language = {en} } @article{PanchalKojdaSahooetal.2022, author = {Panchal, Gyanendra and Kojda, Sandrino Danny and Sahoo, Sophia and Bagri, Anita and Kunwar, Hemant Singh and Bocklage, Lars and Panchwanee, Anjali and Sathe, Vasant G. and Fritsch, Katharina and Habicht, Klaus and Choudhary, Ram Janay and Phase, Deodutta M.}, title = {Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure}, series = {Physical review : B, Condensed matter and materials physics}, volume = {105}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.105.224419}, pages = {8}, year = {2022}, abstract = {We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20-300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide.}, language = {en} } @article{DrozdovAllisonShpritsetal.2022, author = {Drozdov, Alexander and Allison, Hayley J. and Shprits, Yuri Y. and Usanova, Maria E. and Saikin, Anthony and Wang, Dedong}, title = {Depletions of Multi-MeV Electrons and their association to Minima in Phase Space Density}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097620}, pages = {11}, year = {2022}, abstract = {Fast-localized electron loss, resulting from interactions with electromagnetic ion cyclotron (EMIC) waves, can produce deepening minima in phase space density (PSD) radial profiles. Here, we perform a statistical analysis of local PSD minima to quantify how readily these are associated with radiation belt depletions. The statistics of PSD minima observed over a year are compared to the Versatile Electron Radiation Belts (VERB) simulations, both including and excluding EMIC waves. The observed minima distribution can only be achieved in the simulation including EMIC waves, indicating their importance in the dynamics of the radiation belts. By analyzing electron flux depletions in conjunction with the observed PSD minima, we show that, in the heart of the outer radiation belt (L* < 5), on average, 53\% of multi-MeV electron depletions are associated with PSD minima, demonstrating that fast localized loss by interactions with EMIC waves are a common and crucial process for ultra-relativistic electron populations.}, language = {en} } @article{GrebenkovMetzlerOshanin2022, author = {Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb}, title = {Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac8824}, pages = {32}, year = {2022}, abstract = {The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search.}, language = {en} } @article{CherstvyWangMetzleretal.2021, author = {Cherstvy, Andrey G. and Wang, Wei and Metzler, Ralf and Sokolov, Igor M.}, title = {Inertia triggers nonergodicity of fractional Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.024115}, pages = {12}, year = {2021}, abstract = {How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM.}, language = {en} } @article{KlettCherstvyShinetal.2021, author = {Klett, Kolja and Cherstvy, Andrey G. and Shin, Jaeoh and Sokolov, Igor M. and Metzler, Ralf}, title = {Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.064603}, pages = {18}, year = {2021}, abstract = {We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction phi and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on phi, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing phi. We also analyze the relative motion in the dimers, finding that larger phi suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(phi) of translational and rotational motion of the dumbbells an exponential decay with phi for weak and a power-law variation D(phi) proportional to (phi - phi(star))(2.4) for strong crowding is found. A comparison of simulation results with theoretical predictions for D(phi) is discussed and some relevant experimental systems are overviewed.}, language = {en} } @article{BolotovSmirnovBubnovaetal.2021, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Bubnova, E. S. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Spatiotemporal regimes in the Kuramoto-Battogtokh system of nonidentical oscillators}, series = {Journal of experimental and theoretical physics}, volume = {132}, journal = {Journal of experimental and theoretical physics}, number = {1}, publisher = {Springer}, address = {Heidelberg [u.a.]}, issn = {1063-7761}, doi = {10.1134/S1063776121010106}, pages = {127 -- 147}, year = {2021}, abstract = {We consider the spatiotemporal states of an ensemble of nonlocally coupled nonidentical phase oscillators, which correspond to different regimes of the long-term evolution of such a system. We have obtained homogeneous, twisted, and nonhomogeneous stationary solutions to the Ott-Antonsen equations corresponding to key variants of the realized collective rotational motion of elements of the medium in question with nonzero mesoscopic characteristics determining the degree of coherence of the dynamics of neighboring particles. We have described the procedures of the search for the class of nonhomogeneous solutions as stationary points of the auxiliary point map and of determining the stability based on analysis of the eigenvalue spectrum of the composite operator. Static and breather cluster regimes have been demonstrated and described, as well as the regimes with an irregular behavior of averaged complex fields including, in particular, the local order parameter.}, language = {en} } @article{VilkAghionNathanetal.2022, author = {Vilk, Ohad and Aghion, Erez and Nathan, Ran and Toledo, Sivan and Metzler, Ralf and Assaf, Michael}, title = {Classification of anomalous diffusion in animal movement data using power spectral analysis}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {33}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e8f}, pages = {16}, year = {2022}, abstract = {The field of movement ecology has seen a rapid increase in high-resolution data in recent years, leading to the development of numerous statistical and numerical methods to analyse relocation trajectories. Data are often collected at the level of the individual and for long periods that may encompass a range of behaviours. Here, we use the power spectral density (PSD) to characterise the random movement patterns of a black-winged kite (Elanus caeruleus) and a white stork (Ciconia ciconia). The tracks are first segmented and clustered into different behaviours (movement modes), and for each mode we measure the PSD and the ageing properties of the process. For the foraging kite we find 1/f noise, previously reported in ecological systems mainly in the context of population dynamics, but not for movement data. We further suggest plausible models for each of the behavioural modes by comparing both the measured PSD exponents and the distribution of the single-trajectory PSD to known theoretical results and simulations.}, language = {en} } @article{SposiniChechkinSokolovetal.2022, author = {Sposini, Vittoria and Chechkin, Aleksei and Sokolov, Igor M. and Roldan-Vargas, Sandalo}, title = {Detecting temporal correlations in hopping dynamics in Lennard-Jones liquids}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {32}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e0a}, pages = {15}, year = {2022}, abstract = {Lennard-Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is characterised by the development of a plateau in the mean-squared displacement (MSD) at intermediate times, accompanied by a non-Gaussianity in the displacement distribution identified by exponential tails. As pointed out by some recent works, the non-Gaussianity persists at times beyond the MSD plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting once again the relevance of rare events in such systems. Single-particle motion of glass-forming liquids is usually interpreted as an alternation of rattling within the local cage and cage-escape motion and therefore can be described as a sequence of waiting times and jumps. In this work, by using a simple yet robust algorithm, we extract jumps and waiting times from single-particle trajectories obtained via molecular dynamics simulations. We investigate the presence of correlations between waiting times and find negative correlations, which becomes more and more pronounced when lowering the temperature.}, language = {en} } @article{KraemerGelbrechtPavithranetal.2022, author = {Kr{\"a}mer, Hauke Kai and Gelbrecht, Maximilian and Pavithran, Induja and Sujith, Ravindran and Marwan, Norbert}, title = {Optimal state space reconstruction via Monte Carlo decision tree search}, series = {Nonlinear Dynamics}, volume = {108}, journal = {Nonlinear Dynamics}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0924-090X}, doi = {10.1007/s11071-022-07280-2}, pages = {1525 -- 1545}, year = {2022}, abstract = {A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in which each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz, the proposed algorithm populates the tree with many leafs by computing different possible embedding paths and the final embedding is chosen as that particular path, which ends at the leaf with the lowest achieved value of the objective function. The method aims to prevent getting stuck in a local minimum of the objective function and can be used in a modular way, enabling practitioners to choose a statistic for possible delays in each embedding cycle as well as a suitable objective function themselves. The proposed method guarantees the optimization of the chosen objective function over the parameter space of the delay embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate the superiority of the proposed method over the classical time delay embedding methods using a variety of application examples. We compare recurrence plot-based statistics inferred from reconstructions of a Lorenz-96 system and highlight an improved forecast accuracy for map-like model data as well as for palaeoclimate isotope time series. Finally, we utilize state space reconstruction for the detection of causality and its strength between observables of a gas turbine type thermoacoustic combustor.}, language = {en} } @article{YuanZhangQiuetal.2022, author = {Yuan, Jun and Zhang, Chujun and Qiu, Beibei and Liu, Wei and So, Shu Kong and Mainville, Mathieu and Leclerc, Mario and Shoaee, Safa and Neher, Dieter and Zou, Yingping}, title = {Effects of energetic disorder in bulk heterojunction organic solar cells}, series = {Energy \& environmental science}, volume = {15}, journal = {Energy \& environmental science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/d2ee00271j}, pages = {2806 -- 2818}, year = {2022}, abstract = {Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19\% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed.}, language = {en} } @article{KrohEllerSchoetzetal.2022, author = {Kroh, Daniel and Eller, Fabian and Sch{\"o}tz, Konstantin and Wedler, Stefan and Perdig{\´o}n-Toro, Lorena and Freychet, Guillaume and Wei, Qingya and D{\"o}rr, Maximilian and Jones, David and Zou, Yingping and Herzig, Eva M. and Neher, Dieter and K{\"o}hler, Anna}, title = {Identifying the signatures of intermolecular interactions in blends of PM6 with Y6 and N4 using absorption spectroscopy}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202205711}, pages = {14}, year = {2022}, abstract = {In organic solar cells, the resulting device efficiency depends strongly on the local morphology and intermolecular interactions of the blend film. Optical spectroscopy was used to identify the spectral signatures of interacting chromophores in blend films of the donor polymer PM6 with two state-of-the-art nonfullerene acceptors, Y6 and N4, which differ merely in the branching point of the side chain. From temperature-dependent absorption and luminescence spectroscopy in solution, it is inferred that both acceptor materials form two types of aggregates that differ in their interaction energy. Y6 forms an aggregate with a predominant J-type character in solution, while for N4 molecules the interaction is predominantly in a H-like manner in solution and freshly spin-cast film, yet the molecules reorient with respect to each other with time or thermal annealing to adopt a more J-type interaction. The different aggregation behavior of the acceptor materials is also reflected in the blend films and accounts for the different solar cell efficiencies reported with the two blends.}, language = {en} } @article{GrebenkovKumar2022, author = {Grebenkov, Denis S. and Kumar, Aanjaneya}, title = {First-passage times of multiple diffusing particles with reversible target-binding kinetics}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {32}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e91}, pages = {33}, year = {2022}, abstract = {We investigate a class of diffusion-controlled reactions that are initiated at the time instance when a prescribed number K among N particles independently diffusing in a solvent are simultaneously bound to a target region. In the irreversible target-binding setting, the particles that bind to the target stay there forever, and the reaction time is the Kth fastest first-passage time to the target, whose distribution is well-known. In turn, reversible binding, which is common for most applications, renders theoretical analysis much more challenging and drastically changes the distribution of reaction times. We develop a renewal-based approach to derive an approximate solution for the probability density of the reaction time. This approximation turns out to be remarkably accurate for a broad range of parameters. We also analyze the dependence of the mean reaction time or, equivalently, the inverse reaction rate, on the main parameters such as K, N, and binding/unbinding constants. Some biophysical applications and further perspectives are briefly discussed.}, language = {en} } @article{WernerReindlDorschetal.2022, author = {Werner, Klaus and Reindl, Nicole and Dorsch, Matti and Geier, Stephan and Munari, Ulisse and Raddi, Roberto}, title = {Non-local thermodynamic equilibrium spectral analysis of five hot, hydrogen-deficient pre-white dwarfs}, series = {Astronomy and Astrophysics}, volume = {658}, journal = {Astronomy and Astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142397}, pages = {15}, year = {2022}, abstract = {Hot, compact, hydrogen-deficient pre-white dwarfs (pre-WDs) with effective temperatures of Teff > 70 000 K and a surface gravity of 5.0 < logg < 7.0 are rather rare objects despite recent and ongoing surveys. It is believed that they are the outcome of either single star evolution (late helium-shell flash or late helium-core flash) or binary star evolution (double WD merger). Their study is interesting because the surface elemental abundances reflect the physics of thermonuclear flashes and merger events. Spectroscopically they are divided in three different classes, namely PG1159, O(He), or He-sdO. We present a spectroscopic analysis of five such stars that turned out to have atmospheric parameters in the range Teff = 70 000-80 000 K and logg = 5.2-6.3. The three investigated He-sdOs have a relatively high hydrogen mass fraction (10\%) that is unexplained by both single (He core flash) and binary evolution (He-WD merger) scenarios. The O(He) star JL 9 is probably a binary helium-WD merger, but its hydrogen content (6\%) is also at odds with merger models. We found that RL 104 is the 'coolest' (Teff = 80 000 K) member of the PG1159 class in a pre-WD stage. Its optical spectrum is remarkable because it exhibits C{\^a}€» IV lines involving Rydberg states with principal quantum numbers up to n = 22. Its rather low mass (0.48-0.02+0.03 M·) is difficult to reconcile with the common evolutionary scenario for PG1159 stars due to it being the outcome of a (very) late He-shell flash. The same mass-problem faces a merger model of a close He-sdO plus CO WD binary that predicts PG1159-like abundances. Perhaps RL 104 originates from a very late He-shell flash in a CO/He WD formed by a merger of two low-mass He-WDs.}, language = {en} } @article{SmirnovBolotovOsipovetal.2021, author = {Smirnov, Lev A. and Bolotov, Maxim I. and Osipov, Grigorij V. and Pikovskij, Arkadij}, title = {Disorder fosters chimera in an array of motile particles}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.034205}, pages = {8}, year = {2021}, abstract = {We consider an array of nonlocally coupled oscillators on a ring, which for equally spaced units possesses a Kuramoto-Battogtokh chimera regime and a synchronous state. We demonstrate that disorder in oscillators positions leads to a transition from the synchronous to the chimera state. For a static (quenched) disorder we find that the probability of synchrony survival depends on the number of particles, from nearly zero at small populations to one in the thermodynamic limit. Furthermore, we demonstrate how the synchrony gets destroyed for randomly (ballistically or diffusively) moving oscillators. We show that, depending on the number of oscillators, there are different scalings of the transition time with this number and the velocity of the units.}, language = {en} } @article{ShaydukHallmannRodriguezFernandezetal.2022, author = {Shayduk, Roman and Hallmann, J{\"o}rg and Rodriguez-Fernandez, Angel and Scholz, Markus and Lu, Wei and B{\"o}senberg, Ulrike and M{\"o}ller, Johannes and Zozulya, Alexey and Jiang, Man and Wegner, Ulrike and Secareanu, Radu-Costin and Palmer, Guido and Emons, Moritz and Lederer, Max and Volkov, Sergey and Lindfors-Vrejoiu, Ionela and Schick, Daniel and Herzog, Marc and Bargheer, Matias and Madsen, Anders}, title = {Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {20}, publisher = {AIP Publishing}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0083256}, pages = {5}, year = {2022}, abstract = {We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude.}, language = {en} } @article{SinghGorskaSandev2022, author = {Singh, Rishu Kumar and G{\´o}rska, Katarzyna and Sandev, Trifce}, title = {General approach to stochastic resetting}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.064133}, pages = {6}, year = {2022}, abstract = {We address the effect of stochastic resetting on diffusion and subdiffusion process. For diffusion we find that mean square displacement relaxes to a constant only when the distribution of reset times possess finite mean and variance. In this case, the leading order contribution to the probability density function (PDF) of a Gaussian propagator under resetting exhibits a cusp independent of the specific details of the reset time distribution. For subdiffusion we derive the PDF in Laplace space for arbitrary resetting protocol. Resetting at constant rate allows evaluation of the PDF in terms of H function. We analyze the steady state and derive the rate function governing the relaxation behavior. For a subdiffusive process the steady state could exist even if the distribution of reset times possesses only finite mean.}, language = {en} } @article{PadashSandevKantzetal.2022, author = {Padash, Amin and Sandev, Trifce and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei}, title = {Asymmetric Levy flights are more efficient in random search}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6050260}, pages = {23}, year = {2022}, abstract = {We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity.}, language = {en} } @article{GerlachPreitschopfKaraevetal.2022, author = {Gerlach, Marius and Preitschopf, Tobias and Karaev, Emil and Quitian-Lara, Heidy Mayerly and Mayer, Dennis and Bozek, John and Fischer, Ingo and Fink, Reinhold F.}, title = {Auger electron spectroscopy of fulminic acid, HCNO}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {25}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02104h}, pages = {15217 -- 15229}, year = {2022}, abstract = {HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes.}, language = {en} }