@article{GuliakovaGorokhovatskyGalikhanovetal.2019, author = {Guliakova, A. A. and Gorokhovatsky, Yu. A. and Galikhanov, M. F. and Fr{\"u}bing, Peter}, title = {Thermoactivational spectroscopy of the high impact polystyrene based composite films}, series = {St. Petersburg Polytechnic University Journal : Physics and Mathematics}, volume = {12}, journal = {St. Petersburg Polytechnic University Journal : Physics and Mathematics}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-7223}, doi = {10.18721/JPM.12401}, pages = {9 -- 16}, year = {2019}, abstract = {The relaxation processes in the high impact polystyrene (HIPS) films filled with 2, 4, 6 vol.\% of titanium dioxide (TiO2) of the rutile modification have been studied using the thermally stimulated depolarization current (TSDC) technique. Three relaxation processes were observed in the composite HIPS films. The first one (a-relaxation peak) appeared at about 93 degrees C and represented the glass transition. The second peak p was a high-temperature part of the first one and overlapped it. The p peak was caused by the release and subsequent motion of excess charges deposited during the electret preparation or the polarization process. The third peak appeared at about 150 degrees C and occurred only in the spectra of the composite films. The overlapping peaks were separated by the thermal cleaning technique. The subsequent application of the numerical methods (the Tikhonov regularization technique) allowed to determine the activation energy of the second process and to compare the obtained value with the corresponding data on the dielectric relaxation.}, language = {ru} } @article{Daute1995, author = {Daute, Daniela}, title = {{\"U}bermolekulare Strukturbildung durch Selbstorganisation neuer discoider Arylaminotriazine and assoziierter Alkoxybenzoate}, year = {1995}, language = {de} } @article{Mikelskis1993, author = {Mikelskis, Helmut}, title = {Zur {\"O}kologisierung des Lernprozesses : Versuch {\"u}ber einen vernachl{\"a}ssigten Aspekt von Umweltbildung}, isbn = {3-89088-073-8}, year = {1993}, language = {de} } @article{Starauschek2006, author = {Starauschek, Erich}, title = {Zur Rolle der Sprache beim Lernen von Physik}, isbn = {3-589-22148-8}, year = {2006}, language = {de} } @article{FruhnerCzichocki1996, author = {Fruhner, Horst and Czichocki, G.}, title = {Zur Bestimmung der kritischen Mizellkonzentration (CMC)}, year = {1996}, language = {de} } @article{Mikelskis1993, author = {Mikelskis, Helmut}, title = {Zukunftsperspektiven physikdidaktischer Forschung im vereinigten Deutschland}, isbn = {3-88064-223-0}, year = {1993}, language = {de} } @article{Mikelskis2001, author = {Mikelskis, Helmut}, title = {Zukunftsperspektiven der Bildung im Informationszeitalter und in der Wissensgesellschaft}, year = {2001}, language = {de} } @article{TrollBeimGraben1998, author = {Troll, G{\"u}nter and Beim Graben, Peter}, title = {Zipfs law is not a consequence of the central limit theorem}, year = {1998}, language = {en} } @article{BlasiusToenjes2009, author = {Blasius, Bernd and Toenjes, Ralf}, title = {Zipf's Law in the popularity distribution of chess openings}, issn = {0031-9007}, doi = {10.1103/Physrevlett.103.218701}, year = {2009}, abstract = {We perform a quantitative analysis of extensive chess databases and show that the frequencies of opening moves are distributed according to a power law with an exponent that increases linearly with the game depth, whereas the pooled distribution of all opening weights follows Zipf's law with universal exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of hierarchical fragmentation the scaling is truly universal and independent of a particular generating mechanism. Our findings are of relevance in general processes with composite decisions.}, language = {en} } @article{LangeReiterKniepertetal.2015, author = {Lange, Ilja and Reiter, Sina and Kniepert, Juliane and Piersimoni, Fortunato and Paetzel, Michael and Hildebrandt, Jana and Brenner, Thomas J. K. and Hecht, Stefan and Neher, Dieter}, title = {Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures}, series = {Applied physics letters}, volume = {106}, journal = {Applied physics letters}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4916182}, pages = {5}, year = {2015}, abstract = {An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene): phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{RosenhahnFinlayPettitetal.2009, author = {Rosenhahn, Axel and Finlay, John A. and Pettit, Michala E. and Ward, Andy and Wirges, Werner and Gerhard, Reimund and Callow, Maureen E. and Grunze, Michael and Callow, James A.}, title = {Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength}, issn = {1559-4106}, doi = {10.1116/1.3110182}, year = {2009}, abstract = {The zeta potential of the motile spores of the green alga (seaweed) Ulva linza was quantified by video microscopy in combination with optical tweezers and determined to be -19.3{\~n}1.1 mV. The electrostatic component involved in the settlement and adhesion of spores was studied using electret surfaces consisting of PTFE and bearing different net charges. As the surface chemistry remains the same for differently charged surfaces, the experimental results isolate the influence of surface charge and thus electrostatic interactions. Ulva spores were demonstrated to have a reduced tendency to settle on negatively charged surfaces and when they did settle the adhesion strength of settled spores was lower than with neutral or positively charged surfaces. These observations can be ascribed to electrostatic interactions.}, language = {en} } @article{MellingerFloresSuarezSinghetal.2007, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Zerst{\"o}rungsfreie Tomographie von Raumladungs- und Polarisationsverteilungen mittles W{\"a}rmepulsen}, issn = {0171-8096}, doi = {10.1524/teme.2007.74.9.437}, year = {2007}, abstract = {Non-destructive, three-dimensional imaging of space-charge and polarization distributions in electret materials has been implemented by means of laser-induced thermal pulses. In pyroelectric films of poled poly(vinylidene fluoride), images of up to 45 x 45 pixels with a depth resolution of less than 0.5 mu m and a lateral resolution of 40 mu m were recorded, the latter being limited by fast thermal diffusion in the absorbing metallic front electrode. Initial applications include the analysis of polarization distributions in corona-poled piezoelectric sensor cables and the detection of patterned space-charge distributions in polytetrafluoroethylene films.}, language = {de} } @article{CioniBekkiGirardietal.2016, author = {Cioni, Maria-Rosa L. and Bekki, Kenji and Girardi, Leo and de Grijs, Richard and Irwin, Mike J. and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Piatti, Andres E. and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {XVII. Proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {586}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527004}, pages = {67 -- 75}, year = {2016}, abstract = {Aims. In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motions of different stellar populations in a tile of 1.5 deg2 in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Methods. Stars of the three main stellar components are selected according to their spatial distributions and their distributions in colour\&\#8722;magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks = 19 mag. Proper motions are derived from the slope of the best-fitting line among ten VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. Results. The resulting absolute proper motion of 47 Tuc is (\&\#956;\&\#945;cos(\&\#948;), \&\#956;\&\#948;) = (+7.26 ± 0.03, \&\#8722;1.25 ± 0.03) mas yr-1. This measurement refers to about 35 000 sources distributed between 10\&\#8242; and 60\&\#8242; from the cluster centre. For the SMC we obtain (\&\#956;\&\#945;cos(\&\#948;), \&\#956;\&\#948;) = (+1.16 ± 0.07, \&\#8722;0.81 ± 0.07) mas yr-1 from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line of sight (l = 305.9, b = \&\#8722;44.9) of this VISTA tile is (\&\#956;\&\#945;cos(\&\#948;), \&\#956;\&\#948;) = (+10.22 ± 0.14, \&\#8722;1.27 ± 0.12) mas yr-1 and has been calculated from about 4000 sources. Systematic uncertainties associated with the astrometric reference system are 0.18 mas yr-1. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius.}, language = {en} } @article{SanjurjoFerrrinTorrejonPostnovetal.2017, author = {Sanjurjo-Ferrrin, G. and Torrejon, J. M. and Postnov, K. and Oskinova, Lida and Rodes-Roca, J. J. and Bernabeu, Guillermo}, title = {XMM-Newton spectroscopy of the accreting magnetar candidate 4U0114+65}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {606}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201630119}, pages = {4039 -- 4042}, year = {2017}, abstract = {Methods. We analysed the energy-resolved light curve and the time-resolved X-ray spectra provided by the EPIC cameras on board XMM-Newton. We also analysed the first high-resolution spectrum of this source provided by the Reflection Grating Spectrometer. Results. An X-ray pulse of 9350 +/- 160 s was measured. Comparison with previous measurements confirms the secular spin up of this source. We successfully fit the pulse-phase-resolved spectra with Comptonisation models. These models imply a very small (r similar to 3 km) and hot (kT similar to 2-3 keV) emitting region and therefore point to a hot spot over the neutron star (NS) surface as the most reliable explanation for the X-ray pulse. The long NS spin period, the spin-up rate, and persistent X-ray emission can be explained within the theory of quasi-spherical settling accretion, which may indicate that the magnetic field is in the magnetar range. Thus, 4U0114+65 could be a wind-accreting magnetar. We also observed two episodes of low luminosity. The first was only observed in the low-energy light curve and can be explained as an absorption by a large over-dense structure in the wind of the B1 supergiant donor. The second episode, which was deeper and affected all energies, may be due to temporal cessation of accretion onto one magnetic pole caused by non-spherical matter capture from the structured stellar wind. The light curve displays two types of dips that are clearly seen during the high-flux intervals. The short dips, with durations of tens of seconds, are produced through absorption by wind clumps. The long dips, in turn, seem to be associated with the rarefied interclump medium. From the analysis of the X-ray spectra, we found evidence of emission lines in the X-ray photoionised wind of the B1Ia donor. The Fe K alpha line was found to be highly variable and much weaker than in other X-ray binaries with supergiant donors. The degree of wind clumping, measured through the covering fraction, was found to be much lower than in supergiant donor stars with earlier spectral types. Conclusions. The XMM-Newton spectroscopy provided further support for the magnetar nature of the neutron star in 4U0114+65. The light curve presents dips that can be associated with clumps and the interclump medium in the stellar wind of the mass donor.}, language = {en} } @article{IgnaceOskinovaBrown2003, author = {Ignace, Richard and Oskinova, Lida and Brown, John C.}, title = {XMM-Newton Observations of the Nitrogen-Rich Wolf-Rayet star WR1}, year = {2003}, abstract = {We present XMM-Newton results for the X-ray spectrum from the N-rich Wolf-Rayet (WR) star WR 1. The EPIC instrument was used to obtain a medium-resolution spectrum. The following features characterize this spectrum: (a) significant emission "bumps" appear that are coincident with the wavelengths of typical strong lines, such as Mg XI, Si XIII and S XV; (b) little emission is detected above 4 keV, in contrast to recent reports of a hard component in the stars WR 6 and WR 110 which are of similar subtype; and (c) evidence for sulfur K-edge absorption at about 2.6 keV, which could only arise from absorption of X-rays by the ambient stellar wind. The lack of hard emission in our dataset is suggestive that WR 1 may truly be a single star, thus representing the first detailed X-ray spectrum that isolates the WR wind alone (in contrast to colliding wind zones). Although the properties of the S-edge are not well-constrained by our data, it does appear to be real, and its detection indicates that at least some of the hot gas in WR 1 must reside interior to the radius of optical depth unity for the total absorptive opacity at the energy of the edge.}, language = {en} } @article{SidoliSgueraEspositoetal.2022, author = {Sidoli, Lara and Sguera, Vito and Esposito, Paolo and Oskinova, Lida and Polletta, Maria del Carmen}, title = {XMM-Newton discovery of very high obscuration in the candidate Supergiant Fast X-ray Transient AX J1714.1-3912}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac691}, pages = {2929 -- 2935}, year = {2022}, abstract = {We have analysed an archival XMM-Newton EPIC observation that serendipitously covered the sky position of a variable X-ray source AX J1714.1-3912, previously suggested to be a Supergiant Fast X-ray Transient (SFXT). During the XMM-Newton observation the source is variable on a timescale of hundred seconds and shows two luminosity states, with a flaring activity followed by unflared emission, with a variability amplitude of a factor of about 50. We have discovered an intense iron emission line with a centroid energy of 6.4 keV in the power law-like spectrum, modified by a large absorption (N-H similar to 10(24) cm(-2)), never observed before from this source. This X-ray spectrum is unusual for an SFXT, but resembles the so-called 'highly obscured sources', high mass X-ray binaries (HMXBs) hosting an evolved B[e] supergiant companion (sgB[e]). This might suggest that AX J1714.1-3912 is a new member of this rare type of HMXBs, which includes IGR J16318-4848 and CI Camelopardalis. Increasing this small population of sources would be remarkable, as they represent an interesting short transition evolutionary stage in the evolution of massive binaries. Nevertheless, AX J1714.1-3912 appears to share X-ray properties of both kinds of HMXBs (SFXT versus sgB[e] HMXB). Therefore, further investigations of the companion star are needed to disentangle the two hypothesis.}, language = {en} } @article{ReicheBarberkaJanietzetal.1994, author = {Reiche, J{\"u}rgen and Barberka, Thomas Andreas and Janietz, Dietmar and Hofmann, Dieter and Pietsch, Ullrich and Brehmer, Ludwig}, title = {X-ray structure investigation and computer modelling of Langmuir-Blodgett films formed from disc-shaped pentaalkines}, year = {1994}, language = {en} } @article{MiedemaMitznerGanschowetal.2017, author = {Miedema, P. S. and Mitzner, Rolf and Ganschow, S. and F{\"o}hlisch, Alexander and Beye, Martin}, title = {X-ray spectroscopy on the active ion in laser crystals}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp03026f}, pages = {21800 -- 21806}, year = {2017}, abstract = {The active ions in typical laser crystals were studied with Resonant Inelastic X-ray Scattering (RIXS) and Partial Fluorescence Yield X-ray Absorption (PFY-XAS) spectroscopies as solid state model systems for dilute active centers. We analyzed Ti3+ and Cr3+ in alpha-Al2O3:Ti3+ and LiCaAlF6:Cr3+, respectively. The comparison of experimental data with semi-empirical multiplet calculations provides insights into the electronic structure and shows how measured crystal field energies are related across different spectroscopies.}, language = {en} } @article{PietschBarberkaGeueetal.1997, author = {Pietsch, Ullrich and Barberka, Thomas Andreas and Geue, Thomas and St{\"o}mmer, Ralph}, title = {X-ray scattering from thin organic films and multilayers}, year = {1997}, language = {en} } @article{StoemmerGoebelHubetal.1998, author = {St{\"o}mmer, Ralph and G{\"o}bel, H. and Hub, W. and Pietsch, Ullrich}, title = {X-ray scattering from silicon surfaces}, year = {1998}, language = {en} } @article{PietschTsirelsonGorfan2003, author = {Pietsch, Ullrich and Tsirelson, Vladimir G. and Gorfan, S. V.}, title = {X-ray scattering amplitude of an atom in a permanent external electric field}, year = {2003}, language = {en} } @article{PietschKubowiczThuenemannetal.2003, author = {Pietsch, Ullrich and Kubowicz, Stephan and Th{\"u}nemann, Andreas F. and Geue, Thomas and Watson, M. D. and Tchebotareva, N. and M{\"u}llen, K.}, title = {X-ray reflectivity study of an amphiphilic hex-peri-hexabenzocoronene at a structured silicon wafer surface}, year = {2003}, language = {en} } @article{GeueHennebergPietsch2002, author = {Geue, Thomas and Henneberg, Oliver and Pietsch, Ullrich}, title = {X-ray reflectivity from sinusoidal surface relief gratings}, issn = {0023-4753}, year = {2002}, language = {en} } @article{Pietsch2002, author = {Pietsch, Ullrich}, title = {X-ray reflectivity from sinusoidal surface relief gratings}, year = {2002}, language = {en} } @article{PoloucekPietschGeueetal.2001, author = {Poloucek, P. and Pietsch, Ullrich and Geue, Thomas and Symietz, Christian and Brezesinski, Gerald}, title = {X-ray reflectivity analysis of thin complex Langmuir-Blodgett films}, year = {2001}, language = {en} } @article{GiewekemeyerKruegerKalbfleischetal.2011, author = {Giewekemeyer, K. and Krueger, S. P. and Kalbfleisch, S. and Bartels, Meike and Beta, Carsten and Salditt, T.}, title = {X-ray propagation microscopy of biological cells using waveguides as a quasipoint source}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {83}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.83.023804}, pages = {7}, year = {2011}, abstract = {We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained biological cells using the simple geometry of in-line holography. The well-known twin-image problem is effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryotic amoeba Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron sources.}, language = {en} } @article{ToalaOskinovaGonzalezGalanetal.2016, author = {Toala, Jes{\´u}s Alberto and Oskinova, Lida and Gonzalez-Galan, Ana and Guerrero, Mart{\´i}n A. and Ignace, R. and Pohl, Martin}, title = {X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/79}, pages = {9}, year = {2016}, abstract = {Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.}, language = {en} } @article{OskinovaFeldmeierHamann2003, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {X-ray line profiles from structured stellar winds}, isbn = {1-58381-133-8}, year = {2003}, abstract = {Absorbing material compressed in a number of thin shells is effectively less opaque for X-rays than smoothly distributed gas. The calculated X-ray emission line profiles are red-shifted if the emission arises from the starward side of the shells.}, language = {en} } @article{FeldmeierOskinovaHamann2003, author = {Feldmeier, Achim and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {X-ray line emission from a fragmented stellar wind}, year = {2003}, abstract = {We discuss X-ray line formation in dense O star winds. A random distribution of wind shocks is assumed to emit X-rays that are partially absorbed by cooler wind gas. The cool gas resides in highly compressed fragments oriented perpendicular to the radial flow direction. For fully opaque fragments, we find that the blueshifted part of X-ray line profiles remains flat-topped even after severe wind attenuation, whereas the red part shows a steep decline. These box- type, blueshifted profiles resemble recent Chandra observations of the O3 star zeta Pup. For partially transparent fragments, the emission lines become similar to those from a homogeneous wind.}, language = {en} } @article{PoppenhaegerKetzerMallonn2020, author = {Poppenh{\"a}ger, Katja and Ketzer, Laura and Mallonn, Matthias}, title = {X-ray irradiation and evaporation of the four young planets around V1298 Tau}, series = {Monthly notices of the Royal Astronomical Society}, volume = {500}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa1462}, pages = {4560 -- 4572}, year = {2020}, abstract = {Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations of the host star with Chandra and ROSAT to measure the current high-energy irradiation level of the planets and employ a model for the stellar activity evolution together with exoplanetary mass-loss to estimate the possible evolution of the planets. We find that V1298 Tau is X-ray bright with log L-X [erg s(-1)] = 30.1 and has a mean coronal temperature of approximate to 9 MK. This places the star amongst the more X-ray luminous ones at this stellar age. We estimate the radiation-driven mass-loss of the exoplanets and find that it depends sensitively on the possible evolutionary spin-down tracks of the star as well as on the current planetary densities. Assuming the planets are of low density due to their youth, we find that the innermost two planets can lose significant parts of their gaseous envelopes and could be evaporated down to their rocky cores depending on the stellar spin evolution. However, if the planets are heavier and follow the mass-radius relation of older planets, then even in the highest XUV irradiation scenario none of the planets is expected to cross the radius gap into the rocky regime until the system reaches an age of 5 Gyr.}, language = {en} } @article{GeueSchultzGrenzeretal.2000, author = {Geue, Thomas and Schultz, Michael and Grenzer, J{\"o}rg and Natansohn, Almeria and Rochon, Paul}, title = {X-ray investigations of the molecular mobility with polymer surface gratings}, year = {2000}, language = {en} } @article{PietschGeueHennebergetal.2003, author = {Pietsch, Ullrich and Geue, Thomas and Henneberg, Oliver and Saphiannikova, Marina}, title = {X-ray investigations of formation efficiency of buried azobenzene polymer density gratings}, doi = {10.1063/1.1554753}, year = {2003}, language = {en} } @article{PietschHesseZhuangetal.2003, author = {Pietsch, Ullrich and Hesse, A. and Zhuang, Y. and Hol{\´y}, Vaclav and Stangl, Jochen and Zerlauth, S. and Schaffler, F. and Bauer, G{\"u}nther}, title = {X-ray grazing-incidence study of inhomogeneous strain relaxation in Si/SiGe wires}, issn = {0168-583X}, year = {2003}, language = {en} } @article{SellbergMcQueenLaksmonoetal.2015, author = {Sellberg, Jonas A. and McQueen, Trevor A. and Laksmono, Hartawan and Schreck, Simon and Beye, Martin and DePonte, Daniel P. and Kennedy, Brian and Nordlund, Dennis and Sierra, Raymond G. and Schlesinger, Daniel and Tokushima, Takashi and Zhovtobriukh, Iurii and Eckert, Sebastian and Segtnan, Vegard H. and Ogasawara, Hirohito and Kubicek, Katharina and Techert, Simone and Bergmann, Uwe and Dakovski, Georgi L. and Schlotter, William F. and Harada, Yoshihisa and Bogan, Michael J. and Wernet, Philippe and F{\"o}hlisch, Alexander and Pettersson, Lars G. M. and Nilsson, Anders}, title = {X-ray emission spectroscopy of bulk liquid water in "no-man's land"}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4905603}, pages = {9}, year = {2015}, abstract = {The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (T-H) of similar to 232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below T-H using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b(1)' and 1b(1)" peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{OskinovaFeldmeierHamann2004, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {X-ray emission lines from inhomogeneous stellar winds}, issn = {0004-6361}, year = {2004}, abstract = {It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of the X-ray observatories Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of the X-ray production. It turned out that none of the existing models was able to fit the observations consistently. The possible caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the evidence that the stellar winds are in fact structured, we present a 2-D numerical model of a stochastic, inhomogeneous wind. Small parcels of hot, X-ray emitting gas are permeated by cool, absorbing wind material which is compressed into thin shell fragments. Wind fragmentation alters the radiative transfer drastically, compared to homogeneous models of the same mass-loss rate. X-rays produced deep inside the wind, which would be totally absorbed in a homogeneous flow, can effectively escape from a fragmented wind. The wind absorption becomes wavelength independent if the individual fragments are optically thick. The X-ray line profiles are flat-topped in the blue part and decline steeply in the red part for the winds with a short acceleration zone. For the winds where the acceleration extends over significant distances, the lines can appear nearly symmetric and only slightly blueshifted, in contrast to the skewed, triangular line profiles typically obtained from homogeneous wind models of high optical depth. We show that profiles from a fragmented wind model can reproduce the observed line profiles from zeta Orionis. The present numerical modeling confirms the results from a previous study, where we derived analytical formulae from a statistical treatment}, language = {en} } @article{Oskinova2015, author = {Oskinova, Lida}, title = {X-ray emission from single WR stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88228}, pages = {295 -- 300}, year = {2015}, abstract = {In this review I briefly summarize our knowledge of the X-ray emission from single WN, WC, and WO stars. These stars have relatively modest X-ray luminosities, typically not exceeding 1L⊙. The analysis of X-ray spectra usually reveals thermal plasma with temperatures reaching a few x10 MK. X-ray variability is detected in some WN stars. At present we don't fully understand how X-ray radiation in produced in WR stars, albeit there are some promising research avenues, such as the presence of CIRs in the winds of some stars. To fully understand WR stars we need to unravel mechanisms of X-ray production in their winds.}, language = {en} } @article{OskinovaHamannCassinellietal.2011, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Cassinelli, Joseph P. and Brown, John C. and Todt, Helge Tobias}, title = {X-ray emission from massive stars with magnetic fields}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {9-10}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0004-6337}, doi = {10.1002/asna.201111602}, pages = {988 -- 993}, year = {2011}, abstract = {We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from "normal" massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a "hybrid" scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities.}, language = {en} } @article{DwarkadasRosenberg2015, author = {Dwarkadas, Vikram V. and Rosenberg, D.}, title = {X-ray Emission from Ionized Wind-Bubbles around Wolf-Rayet Stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88301}, pages = {329 -- 332}, year = {2015}, abstract = {Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.∗}, language = {en} } @article{Werner1996, author = {Werner, Klaus}, title = {X-ray emission from hot hydrogen-deficient white dwarfs}, year = {1996}, language = {en} } @article{GorfmanTsirelsonPietsch2005, author = {Gorfman, S. V. and Tsirelson, Vladimir G. and Pietsch, Ullrich}, title = {X-ray diffraction by a crystal in a permanent external electric field : general considerations}, issn = {0108-7673}, year = {2005}, abstract = {The variations of X-ray diffraction intensities from a crystal in the presence of a permanent external electric field is modeled analytically using a first-order stationary perturbation theory. The change in a crystal, induced by an external electric field, is separated into two contributions. The first one is related to a pure polarization of an electron subsystem, while the second contribution can be reduced to the displacements of the rigid pseudoatoms from their equilibrium positions. It is shown that a change of the X-ray diffraction intensities mainly originates from the second contribution, while the influence of the pure polarization of a crystal electron subsystem is negligibly small. The quantities restored from an X-ray diffraction experiment in the presence of an external electric field were analyzed in detail in terms of a rigid pseudoatomic model of electron density and harmonic approximation for the atomic thermal motion. Explicit relationships are derived that link the properties of phonon spectra with E-field-induced variations of a structure factor, pseudoatomic displacements and piezoelectric strains. The displacements can be numerically estimated using a model of independent atomic motion if the Debye - Waller factors and pseudoatomic charges are known either from a previous single-crystal X-ray diffraction study or from density functional theory calculations. The above estimations can be used to develop an optimum strategy for a data collection that avoids the measurements of reflections insensitive to the electric-field-induced variations}, language = {en} } @article{DarowskiPietschWangetal.1998, author = {Darowski, Nora and Pietsch, Ullrich and Wang, K. H. and Forchel, Alfred and Shen, W. and Kycia, S.}, title = {X-ray diffraction analysis of strain relaxation in free standing and buried GaAs/GaInAs/GaAs SQW lateral structures}, year = {1998}, language = {en} } @article{Oskinova2016, author = {Oskinova, Lida}, title = {X-ray diagnostics of massive star winds}, series = {Advances in space research}, volume = {58}, journal = {Advances in space research}, publisher = {Elsevier}, address = {Oxford}, issn = {0273-1177}, doi = {10.1016/j.asr.2016.06.030}, pages = {739 -- 760}, year = {2016}, abstract = {Nearly all types of massive stars with radiatively driven stellar winds are X-ray sources that can be observed by the presently operating powerful X-ray telescopes. In this review I briefly address recent advances in our understanding of stellar winds obtained from X-ray observations. X-rays may strongly influence the dynamics of weak winds of main sequence B-type stars. X-ray pulsations were detected in a beta Cep type variable giving evidence of tight photosphere-wind connections. The winds of OB dwarfs with subtypes later than O9V may be predominantly in a hot phase, and X-ray observations offer the best window for their studies. The X-ray properties of OB super giants are largely determined by the effects of radiative transfer in their clumped stellar winds. The recently suggested method to directly measure mass-loss rates of O stars by fitting the shapes of X-ray emission lines is considered but its validity cannot be confirmed. To obtain robust quantitative information on stellar wind parameters from X-ray spectroscopy, a multiwavelength analysis by means of stellar atmosphere models is required. Independent groups are now performing such analyses with encouraging results. Joint analyses of optical, UV, and X-ray spectra of OB supergiants yield consistent mass-loss rates. Depending on the adopted clumping parameters, the empirically derived mass-loss rates are a factor of a few smaller or comparable to those predicted by standard recipes (Vink et al., 2001). All sufficiently studied O stars display variable X-ray emission that might be related to corotating interaction regions in their winds. In the latest stages of stellar evolution, single red supergiants (RSG) and luminous blue variable (LBV) stars do not emit observable amounts of X-rays. On the other hand, nearly all types of Wolf-Rayet (WR) stars are X-ray sources. X-ray spectroscopy allows a sensitive probe of WR wind abundances and opacities. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.}, language = {en} } @article{HennebergGeueSaphiannikovaetal.2003, author = {Henneberg, Oliver and Geue, Thomas and Saphiannikova, Marina and Pietsch, Ullrich and Rochon, Paul}, title = {X-ray and VIS light scattering from light-induced polymer gratings}, doi = {10.1088/0022-3727/36/10A/350}, year = {2003}, language = {en} } @article{HennebergPanznerPietschetal.2004, author = {Henneberg, Oliver and Panzner, Tobias and Pietsch, Ullrich and Geue, Thomas and Saphiannikova, Marina and Rochon, Paul and Finkelstein, Kenneth D.}, title = {X-ray and VIS light scattering from light-induced polymer gratings}, issn = {0044-2968}, year = {2004}, abstract = {Sinusoidally shaped surface relief gratings made of polymer films containing, azobenzene moieties can be created by holographic illumination with laser light of about lambda approximate to 500 nm. The remarkable material transport takes place at temperatures far (100 K) below the glass transition temperature of the material. As probed by visible light scattering the efficiency of grating formation crucially depends on the polarization state of the laser light and is maximal when circular polarization is used. In contrast to VIS light scattering X-ray diffraction is most sensitive for periodic surface undulations with amplitudes below 10 nm. Thus, combined in-situ X-ray and visible light scattering at CHESS were used to investigate the dynamics of surface relief grating formations upon laser illumination. The time development of grating peaks up to 9th order at laser power of P = 20 mW/cm(2) could be investigated, even the onset of grating formation as a function of light polarization. A linear growth of grating amplitude was observed for all polarizations. The growth velocity is maximal using circularly polarized light but very small for s-polarized light}, language = {en} } @article{GrenzerSchomburgLingottetal.1998, author = {Grenzer, J{\"o}rg and Schomburg, E. and Lingott, I. and Ignotov, A. a. and Renk, K. F. and Pietsch, Ullrich and Rose, Dirk and Zeimer, Ute and Melzer, B. J. and Ivanov, S. and Schaposchnikov, S. and Kop'ev, P. S. and Pavel'ev, D. G. and Koschurinov, Yu.}, title = {X-ray and transport characterization of an Esaki-Tsu superlattice device}, year = {1998}, language = {en} } @article{EnglischPenacoradaBrehmeretal.1999, author = {Englisch, Uwe and Penacorada, Florencio and Brehmer, Ludwig and Pietsch, Ullrich}, title = {X-ray and neutron reflection analysis of the structure and the molecular exchange process in simple and complex fatty acid salt Langmuir-Blodgett multilayers}, year = {1999}, language = {en} } @article{PietschHolyStroemmeretal.1995, author = {Pietsch, Ullrich and Hol{\´y}, Vaclav and Str{\"o}mmer, R. and Englisch, Uwe}, title = {X-ray and neutron diffuse scattering from multilayers of fatty acid salt molecules}, year = {1995}, language = {en} } @article{KrollKernKubinetal.2016, author = {Kroll, Thomas and Kern, Jan and Kubin, Markus and Ratner, Daniel and Gul, Sheraz and Fuller, Franklin D. and L{\"o}chel, Heike and Krzywinski, Jacek and Lutman, Alberto and Ding, Yuantao and Dakovski, Georgi L. and Moeller, Stefan and Turner, Joshua J. and Alonso-Mori, Roberto and Nordlund, Dennis L. and Rehanek, Jens and Weniger, Christian and Firsov, Alexander and Brzhezinskaya, Maria and Chatterjee, Ruchira and Lassalle-Kaiser, Benedikt and Sierra, Raymond G. and Laksmono, Hartawan and Hill, Ethan and Borovik, Andrew S. and Erko, Alexei and F{\"o}hlisch, Alexander and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe and Bergmann, Uwe}, title = {X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser}, series = {Optics express : the international electronic journal of optics}, volume = {24}, journal = {Optics express : the international electronic journal of optics}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.24.022469}, pages = {22469 -- 22480}, year = {2016}, abstract = {X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. (C) 2016 Optical Society of America}, language = {en} } @article{DeBeckerdelValleRomeroetal.2017, author = {De Becker, M. and del Valle, Maria Victoria and Romero, G. E. and Peri, C. S. and Benaglia, P.}, title = {X- ray study of bow shocks in runaway stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1826}, pages = {4452 -- 4464}, year = {2017}, abstract = {Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.}, language = {en} } @article{PabloMoffat2015, author = {Pablo, H. and Moffat, Anthony F. J.}, title = {WR Time Series Photometry}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88031}, pages = {205 -- 208}, year = {2015}, abstract = {We take a comprehensive look at Wolf Rayet photometric variability using the MOST satellite. This sample, consisting of 6 WR stars and 6 WC stars defies all typical photometric analysis. We do, however, confirm the presence of unusual periodic signals resembling sawtooth waves which are present in 11 out of 12 stars in this sample.}, language = {en} }