@article{PetreskaPejovSandevetal.2022, author = {Petreska, Irina and Pejov, Ljupco and Sandev, Trifce and Kocarev, Ljupčo and Metzler, Ralf}, title = {Tuning of the dielectric relaxation and complex susceptibility in a system of polar molecules: a generalised model based on rotational diffusion with resetting}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {2}, publisher = {MDPI AG, Fractal Fract Editorial Office}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6020088}, pages = {23}, year = {2022}, abstract = {The application of the fractional calculus in the mathematical modelling of relaxation processes in complex heterogeneous media has attracted a considerable amount of interest lately. The reason for this is the successful implementation of fractional stochastic and kinetic equations in the studies of non-Debye relaxation. In this work, we consider the rotational diffusion equation with a generalised memory kernel in the context of dielectric relaxation processes in a medium composed of polar molecules. We give an overview of existing models on non-exponential relaxation and introduce an exponential resetting dynamic in the corresponding process. The autocorrelation function and complex susceptibility are analysed in detail. We show that stochastic resetting leads to a saturation of the autocorrelation function to a constant value, in contrast to the case without resetting, for which it decays to zero. The behaviour of the autocorrelation function, as well as the complex susceptibility in the presence of resetting, confirms that the dielectric relaxation dynamics can be tuned by an appropriate choice of the resetting rate. The presented results are general and flexible, and they will be of interest for the theoretical description of non-trivial relaxation dynamics in heterogeneous systems composed of polar molecules.}, language = {en} } @article{ThapaParkKimetal.2022, author = {Thapa, Samudrajit and Park, Seongyu and Kim, Yeongjin and Jeon, Jae-Hyung and Metzler, Ralf and Lomholt, Michael A.}, title = {Bayesian inference of scaled versus fractional Brownian motion}, series = {Journal of physics : A, mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, mathematical and theoretical}, number = {19}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac60e7}, pages = {21}, year = {2022}, abstract = {We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one.}, language = {en} } @article{CherstvySafdariMetzler2021, author = {Cherstvy, Andrey G. and Safdari, Hadiseh and Metzler, Ralf}, title = {Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity}, series = {Journal of physics. D, Applied physics}, volume = {54}, journal = {Journal of physics. D, Applied physics}, number = {19}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0022-3727}, doi = {10.1088/1361-6463/abdff0}, pages = {18}, year = {2021}, abstract = {We investigate a diffusion process with a time-dependent diffusion coefficient, both exponentially increasing and decreasing in time, D(t)=D-0(e +/- 2 alpha t). For this (hypothetical) nonstationary diffusion process we compute-both analytically and from extensive stochastic simulations-the behavior of the ensemble- and time-averaged mean-squared displacements (MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations derived for the short- and long-time behaviors are shown to be in excellent agreement with the results of simulations. The diffusive characteristics in the presence of ageing are also considered, with dramatic differences of the over- versus underdamped regime. Our results for D(t)=D-0(e +/- 2 alpha t) extend and generalize the class of diffusive systems obeying scaled Brownian motion featuring a power-law-like variation of the diffusivity with time, D(t) similar to t(alpha-1). We also examine the logarithmically increasing diffusivity, D(t)=D(0)log[t/tau(0)], as another fundamental functional dependence (in addition to the power-law and exponential) and as an example of diffusivity slowly varying in time. One of the main conclusions is that the behavior of the massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found for the time-dependent diffusion of the massless particles at short times. The latter manifests itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged MSD. The current findings are potentially applicable to a class of physical systems out of thermal equilibrium where a rapid increase or decrease of the particles' diffusivity is inherently realized. One biological system potentially featuring all three types of time-dependent diffusion (power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we thoroughly discuss in the end.}, language = {en} } @article{XuMetzlerWang2022, author = {Xu, Pengbo and Metzler, Ralf and Wang, Wanli}, title = {Infinite density and relaxation for Levy walks in an external potential}, series = {Physical review}, volume = {105}, journal = {Physical review}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.044118}, pages = {15}, year = {2022}, abstract = {Levy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(r ) = v0/./r. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly.}, language = {en} } @article{CherstvyVinodAghionetal.2021, author = {Cherstvy, Andrey G. and Vinod, Deepak and Aghion, Erez and Sokolov, Igor M. and Metzler, Ralf}, title = {Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {103}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.103.062127}, pages = {11}, year = {2021}, abstract = {Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochastic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent volatility, sigma(t) similar to t(alpha), named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) computed for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while the time-averaged MSD (TAMSD)-based on a sliding-window averaging along a single trajectory-is always linear at short lag times Delta. The proportionality factor between these the two averages of the time series is Delta/T at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations and pronounced nonequivalence of the MSD and TAMSD at Delta/T << 1 is a manifestation of weak ergodicity breaking for standard GBM and for SGBM with s (t)-modulation, the main focus of our analysis. The analytical predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic computer simulations.}, language = {en} } @article{VinodCherstvyWangetal.2022, author = {Vinod, Deepak and Cherstvy, Andrey G. and Wang, Wei and Metzler, Ralf and Sokolov, Igor M.}, title = {Nonergodicity of reset geometric Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.L012106}, pages = {4}, year = {2022}, abstract = {We derive. the ensemble-and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic.}, language = {en} } @article{TomovskiMetzlerGerhold2022, author = {Tomovski, Živorad and Metzler, Ralf and Gerhold, Stefan}, title = {Fractional characteristic functions, and a fractional calculus approach for moments of random variables}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {25}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {4}, publisher = {De Gruyter}, address = {Berlin ; Boston}, issn = {1314-2224}, doi = {10.1007/s13540-022-00047-x}, pages = {1307 -- 1323}, year = {2022}, abstract = {In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann-Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented.}, language = {en} } @article{VargheseChechkinMetzleretal.2021, author = {Varghese, Alan J. and Chechkin, Aleksei and Metzler, Ralf and Sujith, Raman I.}, title = {Capturing multifractality of pressure fluctuations in thermoacoustic systems using fractional-order derivatives}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {31}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {3}, publisher = {American Institute of Physics, AIP}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0032585}, pages = {9}, year = {2021}, abstract = {The stable operation of a turbulent combustor is not completely silent; instead, there is a background of small amplitude aperiodic acoustic fluctuations known as combustion noise. Pressure fluctuations during this state of combustion noise are multifractal due to the presence of multiple temporal scales that contribute to its dynamics. However, existing models are unable to capture the multifractality in the pressure fluctuations. We conjecture an underlying fractional dynamics for the thermoacoustic system and obtain a fractional-order model for pressure fluctuations. The data from this model has remarkable visual similarity to the experimental data and also has a wide multifractal spectrum during the state of combustion noise. Quantitative similarity with the experimental data in terms of the Hurst exponent and the multifractal spectrum is observed during the state of combustion noise. This model is also able to produce pressure fluctuations that are qualitatively similar to the experimental data acquired during intermittency and thermoacoustic instability. Furthermore, we argue that the fractional dynamics vanish as we approach the state of thermoacoustic instability.}, language = {en} } @article{RitschelCherstvyMetzler2021, author = {Ritschel, Stefan and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Universality of delay-time averages for financial time series}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/ac2220}, pages = {30}, year = {2021}, abstract = {We analyze historical data of stock-market prices for multiple financial indices using the concept of delay-time averaging for the financial time series (FTS). The region of validity of our recent theoretical predictions [Cherstvy A G et al 2017 New J. Phys. 19 063045] for the standard and delayed time-averaged mean-squared 'displacements' (TAMSDs) of the historical FTS is extended to all lag times. As the first novel element, we perform extensive computer simulations of the stochastic differential equation describing geometric Brownian motion (GBM) which demonstrate a quantitative agreement with the analytical long-term price-evolution predictions in terms of the delayed TAMSD (for all stock-market indices in crisis-free times). Secondly, we present a robust procedure of determination of the model parameters of GBM via fitting the features of the price-evolution dynamics in the FTS for stocks and cryptocurrencies. The employed concept of single-trajectory-based time averaging can serve as a predictive tool (proxy) for a mathematically based assessment and rationalization of probabilistic trends in the evolution of stock-market prices.}, language = {en} } @article{GuggenbergerChechkinMetzler2022, author = {Guggenberger, Tobias and Chechkin, Aleksei and Metzler, Ralf}, title = {Absence of stationary states and non-Boltzmann distributions of fractional Brownian motion in shallow external potentials}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {7}, publisher = {Dt. Physikalische Ges.}, address = {[Bad Honnef]}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac7b3c}, pages = {18}, year = {2022}, abstract = {We study the diffusive motion of a particle in a subharmonic potential of the form U(x) = |x|( c ) (0 < c < 2) driven by long-range correlated, stationary fractional Gaussian noise xi ( alpha )(t) with 0 < alpha <= 2. In the absence of the potential the particle exhibits free fractional Brownian motion with anomalous diffusion exponent alpha. While for an harmonic external potential the dynamics converges to a Gaussian stationary state, from extensive numerical analysis we here demonstrate that stationary states for shallower than harmonic potentials exist only as long as the relation c > 2(1 - 1/alpha) holds. We analyse the motion in terms of the mean squared displacement and (when it exists) the stationary probability density function. Moreover we discuss analogies of non-stationarity of Levy flights in shallow external potentials.}, language = {en} } @article{LiXuLietal.2020, author = {Li, Hua and Xu, Yong and Li, Yongge and Metzler, Ralf}, title = {Transition path dynamics across rough inverted parabolic potential barrier}, series = {The European physical journal : Plus}, volume = {135}, journal = {The European physical journal : Plus}, number = {9}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {2190-5444}, doi = {10.1140/epjp/s13360-020-00752-7}, pages = {22}, year = {2020}, abstract = {Transition path dynamics have been widely studied in chemical, physical, and technological systems. Mostly, the transition path dynamics is obtained for smooth barrier potentials, for instance, generic inverse-parabolic shapes. We here present analytical results for the mean transition path time, the distribution of transition path times, the mean transition path velocity, and the mean transition path shape in a rough inverted parabolic potential function under the driving of Gaussian white noise. These are validated against extensive simulations using the forward flux sampling scheme in parallel computations. We observe how precisely the potential roughness, the barrier height, and the noise intensity contribute to the particle transition in the rough inverted barrier potential.}, language = {en} } @article{AwadMetzler2022, author = {Awad, Emad and Metzler, Ralf}, title = {Closed-form multi-dimensional solutions and asymptotic behaviours for subdiffusive processes with crossovers: II. Accelerating case}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {20}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac5a90}, pages = {29}, year = {2022}, abstract = {Anomalous diffusion with a power-law time dependence vertical bar R vertical bar(2)(t) similar or equal to t(alpha i) of the mean squared displacement occurs quite ubiquitously in numerous complex systems. Often, this anomalous diffusion is characterised by crossovers between regimes with different anomalous diffusion exponents alpha(i). Here we consider the case when such a crossover occurs from a first regime with alpha(1) to a second regime with alpha(2) such that alpha(2) > alpha(1), i.e., accelerating anomalous diffusion. A widely used framework to describe such crossovers in a one-dimensional setting is the bi-fractional diffusion equation of the so-called modified type, involving two time-fractional derivatives defined in the Riemann-Liouville sense. We here generalise this bi-fractional diffusion equation to higher dimensions and derive its multidimensional propagator (Green's function) for the general case when also a space fractional derivative is present, taking into consideration long-ranged jumps (Levy flights). We derive the asymptotic behaviours for this propagator in both the short- and long-time as well the short- and long-distance regimes. Finally, we also calculate the mean squared displacement, skewness and kurtosis in all dimensions, demonstrating that in the general case the non-Gaussian shape of the probability density function changes.}, language = {en} } @article{WangMetzlerCherstvy2022, author = {Wang, Wei and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {31}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp01741e}, pages = {18482 -- 18504}, year = {2022}, abstract = {How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD < x(2)(Delta)> and TAMSD <<(delta(2)(Delta))over bar>> quantifiers-of FBM featuring < x(2) (Delta >> = <<(delta(2)(Delta >)over bar>> proportional to Delta(2H) (where H is the Hurst exponent and Delta is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity D-proportional to(t) proportional to t(alpha-1) -germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with < x(2)(Delta >> proportional to Delta(alpha+)(2H)(-1) and <(delta 2(Delta >) over bar > proportional to Delta(2H). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when alpha + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < alpha < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.}, language = {en} } @article{ScottWeissSelhuberUnkeletal.2022, author = {Scott, Shane and Weiss, Matthias and Selhuber-Unkel, Christine and Barooji, Younes F. and Sabri, Adal and Erler, Janine T. and Metzler, Ralf and Oddershede, Lene B.}, title = {Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {25}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {3}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp01384c}, pages = {1513 -- 1537}, year = {2022}, abstract = {A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.}, language = {en} } @article{DoerriesChechkinMetzler2022, author = {Doerries, Timo J. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Apparent anomalous diffusion and non-Gaussian distributions in a simple mobile-immobile transport model with Poissonian switching}, series = {Interface : journal of the Royal Society}, volume = {19}, journal = {Interface : journal of the Royal Society}, number = {192}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2022.0233}, pages = {14}, year = {2022}, abstract = {We analyse mobile-immobile transport of particles that switch between the mobile and immobile phases with finite rates. Despite this seemingly simple assumption of Poissonian switching, we unveil a rich transport dynamics including significant transient anomalous diffusion and non-Gaussian displacement distributions. Our discussion is based on experimental parameters for tau proteins in neuronal cells, but the results obtained here are expected to be of relevance for a broad class of processes in complex systems. Specifically, we obtain that, when the mean binding time is significantly longer than the mean mobile time, transient anomalous diffusion is observed at short and intermediate time scales, with a strong dependence on the fraction of initially mobile and immobile particles. We unveil a Laplace distribution of particle displacements at relevant intermediate time scales. For any initial fraction of mobile particles, the respective mean squared displacement (MSD) displays a plateau. Moreover, we demonstrate a short-time cubic time dependence of the MSD for immobile tracers when initially all particles are immobile.}, language = {en} } @article{MutothyaXuLietal.2021, author = {Mutothya, Nicholas Mwilu and Xu, Yong and Li, Yongge and Metzler, Ralf and Mutua, Nicholas Muthama}, title = {First passage dynamics of stochastic motion in heterogeneous media driven by correlated white Gaussian and coloured non-Gaussian noises}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/ac35b5}, pages = {24}, year = {2021}, abstract = {We study the first passage dynamics for a diffusing particle experiencing a spatially varying diffusion coefficient while driven by correlated additive Gaussian white noise and multiplicative coloured non-Gaussian noise. We consider three functional forms for position dependence of the diffusion coefficient: power-law, exponential, and logarithmic. The coloured non-Gaussian noise is distributed according to Tsallis' q-distribution. Tracks of the non-Markovian systems are numerically simulated by using the fourth-order Runge-Kutta algorithm and the first passage times (FPTs) are recorded. The FPT density is determined along with the mean FPT (MFPT). Effects of the noise intensity and self-correlation of the multiplicative noise, the intensity of the additive noise, the cross-correlation strength, and the non-extensivity parameter on the MFPT are discussed.}, language = {en} } @article{EmanuelCherstvyMetzleretal.2020, author = {Emanuel, Marc D. and Cherstvy, Andrey G. and Metzler, Ralf and Gompper, Gerhard}, title = {Buckling transitions and soft-phase invasion of two-component icosahedral shells}, series = {Physical review / publ. by The American Physical Society. E, Statistical, nonlinear, and soft matter physics}, volume = {102}, journal = {Physical review / publ. by The American Physical Society. E, Statistical, nonlinear, and soft matter physics}, number = {6}, publisher = {Woodbury}, address = {New York}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.062104}, pages = {26}, year = {2020}, abstract = {What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.}, language = {en} } @article{MejiaMonasterioMetzlerVollmer2020, author = {Mejia-Monasterio, Carlos and Metzler, Ralf and Vollmer, J{\"u}rgen}, title = {Editorial: anomalous transport}, series = {Frontiers in Physics}, volume = {8}, journal = {Frontiers in Physics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-424X}, doi = {10.3389/fphy.2020.622417}, pages = {4}, year = {2020}, language = {en} } @article{MutothyaXuLietal.2021, author = {Mutothya, Nicholas Mwilu and Xu, Yong and Li, Yongge and Metzler, Ralf}, title = {Characterising stochastic motion in heterogeneous media driven by coloured non-Gaussian noise}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {54}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {29}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/abfba6}, pages = {31}, year = {2021}, abstract = {We study the stochastic motion of a test particle in a heterogeneous medium in terms of a position dependent diffusion coefficient mimicking measured deterministic diffusivity gradients in biological cells or the inherent heterogeneity of geophysical systems. Compared to previous studies we here investigate the effect of the interplay of anomalous diffusion effected by position dependent diffusion coefficients and coloured non-Gaussian noise. The latter is chosen to be distributed according to Tsallis' q-distribution, representing a popular example for a non-extensive statistic. We obtain the ensemble and time averaged mean squared displacements for this generalised process and establish its non-ergodic properties as well as analyse the non-Gaussian nature of the associated displacement distribution. We consider both non-stratified and stratified environments.}, language = {en} } @article{XuLiuLietal.2020, author = {Xu, Yong and Liu, Xuemei and Li, Yongge and Metzler, Ralf}, title = {Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.062106}, pages = {16}, year = {2020}, abstract = {Heterogeneous diffusion processes (HDPs) with space-dependent diffusion coefficients D(x) are found in a number of real-world systems, such as for diffusion of macromolecules or submicron tracers in biological cells. Here, we examine HDPs in quenched-disorder systems with Gaussian colored noise (GCN) characterized by a diffusion coefficient with a power-law dependence on the particle position and with a spatially random scaling exponent. Typically, D(x) is considered to be centerd at the origin and the entire x axis is characterized by a single scaling exponent a. In this work we consider a spatially random scenario: in periodic intervals ("layers") in space D(x) is centerd to the midpoint of each interval. In each interval the scaling exponent alpha is randomly chosen from a Gaussian distribution. The effects of the variation of the scaling exponents, the periodicity of the domains ("layer thickness") of the diffusion coefficient in this stratified system, and the correlation time of the GCN are analyzed numerically in detail. We discuss the regimes of superdiffusion, subdiffusion, and normal diffusion realisable in this system. We observe and quantify the domains where nonergodic and non-Gaussian behaviors emerge in this system. Our results provide new insights into the understanding of weak ergodicity breaking for HDPs driven by colored noise, with potential applications in quenched layered systems, typical model systems for diffusion in biological cells and tissues, as well as for diffusion in geophysical systems.}, language = {en} } @article{CapałaPadashChechkinetal.2020, author = {Capała, Karol and Padash, Amin and Chechkin, Aleksei V. and Shokri, Babak and Metzler, Ralf and Dybiec, Bartłomiej}, title = {Levy noise-driven escape from arctangent potential wells}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {12}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {1054-1500}, doi = {10.1063/5.0021795}, pages = {15}, year = {2020}, abstract = {The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations from chemical reactions to leaving an established home range in movement ecology. Concurrently, Levy noise is a well-established approach to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the movement patterns of animals and humans. Here, we study the problem of Levy noise-driven escape from an almost rectangular, arctangent potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed transient dynamics to the general properties of stationary states of Levy processes in single-well potentials. The first-escape dynamics is shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point.}, language = {en} } @article{VinodCherstvyMetzleretal.2022, author = {Vinod, Deepak and Cherstvy, Andrey G. and Metzler, Ralf and Sokolov, Igor M.}, title = {Time-averaging and nonergodicity of reset geometric Brownian motion with drift}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {106}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.106.034137}, pages = {36}, year = {2022}, abstract = {How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future? Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged properties of the respective "economic" or geometric Brownian motion (GBM) with a nonzero drift exposed to a Poissonian constant-rate price-restarting process of "resetting." We examine-based both on thorough analytical calculations and on findings from systematic stochastic computer simulations-the general situation of reset GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility, and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset GBM under the conditions of both rare and frequent resetting. We consider three main regions of model parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of this process. The analytical relations are fully supported by the results of computer simulations. In particular, we obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(Delta) not equal TAMSD(Delta) and Variance(Delta) not equal TAMSD(Delta) at short lag times Delta and for long trajectory lengths T. We investigate the behavior of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on the rate of reset at Delta/T << 1. Applications of these theoretical results to the analysis of prices of reset-containing options are pertinent.}, language = {en} } @article{SecklerMetzler2022, author = {Seckler, Henrik and Metzler, Ralf}, title = {Bayesian deep learning for error estimation in the analysis of anomalous diffusion}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-022-34305-6}, pages = {13}, year = {2022}, abstract = {Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.
Diffusive motions in complex environments such as living biological cells or soft matter systems can be analyzed with single-particle-tracking approaches, where accuracy of output may vary. The authors involve a machine-learning technique for decoding anomalous-diffusion data and provide an uncertainty estimate together with predicted output.}, language = {en} } @article{CaetanoCarvalhoMetzleretal.2020, author = {Caetano, Daniel L. Z. and Carvalho, Sidney Jurado de and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of multiple polyelectrolytes onto a nanosphere}, series = {Interface : journal of the Royal Society}, volume = {17}, journal = {Interface : journal of the Royal Society}, number = {167}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2020.0199}, pages = {10}, year = {2020}, abstract = {Employing extensive Monte Carlo computer simulations, we investigate in detail the properties of multichain adsorption of charged flexible polyelectrolytes (PEs) onto oppositely charged spherical nanoparticles (SNPs). We quantify the conditions of critical adsorption-the phase-separation curve between the adsorbed and desorbed states of the PEs-as a function of the SNP surface-charge density and the concentration of added salt. We study the degree of fluctuations of the PE-SNP electrostatic binding energy, which we use to quantify the emergence of the phase subtransitions, including a series of partially adsorbed PE configurations. We demonstrate how the phase-separation adsorption-desorption boundary shifts and splits into multiple subtransitions at low-salt conditions, thereby generalizing and extending the results for critical adsorption of a single PE onto the SNP. The current findings are relevant for finite concentrations of PEs around the attracting SNP, such as the conditions for PE adsorption onto globular proteins carrying opposite electric charges.}, language = {en} } @article{StojkoskiSandevBasnarkovetal.2020, author = {Stojkoski, Viktor and Sandev, Trifce and Basnarkov, Lasko and Kocarev, Ljupco and Metzler, Ralf}, title = {Generalised geometric Brownian motion}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1099-4300}, doi = {10.3390/e22121432}, pages = {34}, year = {2020}, abstract = {Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.}, language = {en} } @article{AwadMetzler2020, author = {Awad, Emad and Metzler, Ralf}, title = {Crossover dynamics from superdiffusion to subdiffusion}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {23}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {1}, publisher = {De Gruyter}, address = {Berlin ; Boston}, issn = {1311-0454}, doi = {10.1515/fca-2020-0003}, pages = {55 -- 102}, year = {2020}, abstract = {The Cattaneo or telegrapher's equation describes the crossover from initial ballistic to normal diffusion. Here we study and survey time-fractional generalisations of this equation that are shown to produce the crossover of the mean squared displacement from superdiffusion to subdiffusion. Conditional solutions are derived in terms of Fox H-functions and the dth-order moments as well as the diffusive flux of the different models are derived. Moreover, the concept of the distribution-like is proposed as an alternative to the probability density function.}, language = {en} } @article{KosztolowiczMetzler2020, author = {Kosztolowicz, Tadeusz and Metzler, Ralf}, title = {Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.032408}, pages = {11}, year = {2020}, abstract = {We propose a model of antibiotic diffusion through a bacterial biofilm when diffusion and/or absorption barriers develop in the biofilm. The idea of this model is: We deduce details of the diffusion process in a medium in which direct experimental study is difficult, based on probing diffusion in external regions. Since a biofilm has a gel-like consistency, we suppose that subdiffusion of particles in the biofilm may occur. To describe this process we use a fractional subdiffusion-absorption equation with an adjustable anomalous diffusion exponent. The boundary conditions at the boundaries of the biofilm are derived by means of a particle random walk model on a discrete lattice leading to an expression involving a fractional time derivative. We show that the temporal evolution of the total amount of substance that has diffused through the biofilm explicitly depends on whether there is antibiotic absorption in the biofilm. This fact is used to experimentally check for antibiotic absorption in the biofilm and if subdiffusion and absorption parameters of the biofilm change over time. We propose a four-stage model of antibiotic diffusion in biofilm based on the following physical characteristics: whether there is absorption of the antibiotic in the biofilm and whether all biofilm parameters remain unchanged over time. The biological interpretation of the stages, in particular their relation with the bacterial defense mechanisms, is discussed. Theoretical results are compared with empirical results of ciprofloxacin diffusion through Pseudomonas aeruginosa biofilm, and ciprofloxacin and gentamicin diffusion through Proteus mirabilis biofilm.}, language = {en} } @misc{SecklerMetzler2022, author = {Seckler, Henrik and Metzler, Ralf}, title = {Bayesian deep learning for error estimation in the analysis of anomalous diffusion}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1314}, issn = {1866-8372}, doi = {10.25932/publishup-58602}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586025}, pages = {13}, year = {2022}, abstract = {Sprache Englisch Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusionmodel and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a wellcalibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.}, language = {en} } @article{SecklerMetzler2022, author = {Seckler, Henrik and Metzler, Ralf}, title = {Bayesian deep learning for error estimation in the analysis of anomalous diffusion}, series = {Nature Communnications}, volume = {13}, journal = {Nature Communnications}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34305-6}, pages = {13}, year = {2022}, abstract = {Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusionmodel and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a wellcalibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.}, language = {en} } @article{GuggenbergerChechkinMetzler2021, author = {Guggenberger, Tobias and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Fractional Brownian motion in superharmonic potentials and non-Boltzmann stationary distributions}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {54}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {29}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac019b}, pages = {17}, year = {2021}, abstract = {We study the stochastic motion of particles driven by long-range correlated fractional Gaussian noise (FGN) in a superharmonic external potential of the form U(x) proportional to x(2n) (n is an element of N). When the noise is considered to be external, the resulting overdamped motion is described by the non-Markovian Langevin equation for fractional Brownian motion. For this case we show the existence of long time, stationary probability density functions (PDFs) the shape of which strongly deviates from the naively expected Boltzmann PDF in the confining potential U(x). We analyse in detail the temporal approach to stationarity as well as the shape of the non-Boltzmann stationary PDF. A typical characteristic is that subdiffusive, antipersistent (with negative autocorrelation) motion tends to effect an accumulation of probability close to the origin as compared to the corresponding Boltzmann distribution while the opposite trend occurs for superdiffusive (persistent) motion. For this latter case this leads to distinct bimodal shapes of the PDF. This property is compared to a similar phenomenon observed for Markovian Levy flights in superharmonic potentials. We also demonstrate that the motion encoded in the fractional Langevin equation driven by FGN always relaxes to the Boltzmann distribution, as in this case the fluctuation-dissipation theorem is fulfilled.}, language = {en} } @article{WangCherstvyLiuetal.2020, author = {Wang, Wei and Cherstvy, Andrey G. and Liu, Xianbin and Metzler, Ralf}, title = {Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.012146}, pages = {012146-1 -- 012146-16}, year = {2020}, abstract = {Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x) = D-0|x|(alpha). Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble-and time-averaged mean-squared displacements couple the scaling exponents alpha of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y similar to |x|(1/(2/(2-alpha)))/t(H) coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), PHDP-FBM(y) = e(-y2)/root pi. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.}, language = {en} } @misc{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1313}, issn = {1866-8372}, doi = {10.25932/publishup-58596}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585967}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @article{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Communications Physics}, volume = {5}, journal = {Communications Physics}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-022-01079-8}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @article{XuZhouMetzleretal.2020, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {L{\´e}vy walk dynamics in an external harmonic potential}, series = {Physical review : E, Statistical, nonlinear, and soft matter physics}, volume = {101}, journal = {Physical review : E, Statistical, nonlinear, and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.101.062127}, pages = {12}, year = {2020}, abstract = {Levy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs-their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some longstanding puzzles around LWs.}, language = {en} } @article{VilkAghionAvgaretal.2022, author = {Vilk, Ohad and Aghion, Erez and Avgar, Tal and Beta, Carsten and Nagel, Oliver and Sabri, Adal and Sarfati, Raphael and Schwartz, Daniel K. and Weiß, Matthias and Krapf, Diego and Nathan, Ran and Metzler, Ralf and Assaf, Michael}, title = {Unravelling the origins of anomalous diffusion}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, number = {3}, publisher = {American Physical Society}, address = {College Park, MD}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033055}, pages = {033055-1 -- 033055-16}, year = {2022}, abstract = {Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations ("Joseph effect"), fat-tailed probability density of increments ("Noah effect"), and nonstationarity ("Moses effect"). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology.}, language = {en} } @misc{VilkAghionAvgaretal.2022, author = {Vilk, Ohad and Aghion, Erez and Avgar, Tal and Beta, Carsten and Nagel, Oliver and Sabri, Adal and Sarfati, Raphael and Schwartz, Daniel K. and Weiß, Matthias and Krapf, Diego and Nathan, Ran and Metzler, Ralf and Assaf, Michael}, title = {Unravelling the origins of anomalous diffusion}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1303}, issn = {1866-8372}, doi = {10.25932/publishup-57764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577643}, pages = {16}, year = {2022}, abstract = {Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations ("Joseph effect"), fat-tailed probability density of increments ("Noah effect"), and nonstationarity ("Moses effect"). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology.}, language = {en} } @misc{SarabadaniMetzlerAlaNissila2022, author = {Sarabadani, Jalal and Metzler, Ralf and Ala-Nissila, Tapio}, title = {Driven polymer translocation into a channel: Isoflux tension propagation theory and Langevin dynamics simulations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1292}, issn = {1866-8372}, doi = {10.25932/publishup-57438}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574387}, pages = {033003-1 -- 033003-14}, year = {2022}, abstract = {Isoflux tension propagation (IFTP) theory and Langevin dynamics (LD) simulations are employed to study the dynamics of channel-driven polymer translocation in which a polymer translocates into a narrow channel and the monomers in the channel experience a driving force fc. In the high driving force limit, regardless of the channel width, IFTP theory predicts τ ∝ f βc for the translocation time, where β = -1 is the force scaling exponent. Moreover, LD data show that for a very narrow channel fitting only a single file of monomers, the entropic force due to the subchain inside the channel does not play a significant role in the translocation dynamics and the force exponent β = -1 regardless of the force magnitude. As the channel width increases the number of possible spatial configurations of the subchain inside the channel becomes significant and the resulting entropic force causes the force exponent to drop below unity.}, language = {en} } @article{SarabadaniMetzlerAlaNissila2022, author = {Sarabadani, Jalal and Metzler, Ralf and Ala-Nissila, Tapio}, title = {Driven polymer translocation into a channel: Isoflux tension propagation theory and Langevin dynamics simulations}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, edition = {3}, publisher = {American Physical Society}, address = {College Park, Maryland, USA}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033003}, pages = {033003-1 -- 033003-14}, year = {2022}, abstract = {Isoflux tension propagation (IFTP) theory and Langevin dynamics (LD) simulations are employed to study the dynamics of channel-driven polymer translocation in which a polymer translocates into a narrow channel and the monomers in the channel experience a driving force fc. In the high driving force limit, regardless of the channel width, IFTP theory predicts τ ∝ f βc for the translocation time, where β = -1 is the force scaling exponent. Moreover, LD data show that for a very narrow channel fitting only a single file of monomers, the entropic force due to the subchain inside the channel does not play a significant role in the translocation dynamics and the force exponent β = -1 regardless of the force magnitude. As the channel width increases the number of possible spatial configurations of the subchain inside the channel becomes significant and the resulting entropic force causes the force exponent to drop below unity.}, language = {en} } @article{WangCherstvyChechkinetal.2020, author = {Wang, Wei and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Thapa, Samudrajit and Seno, Flavio and Liu, Xianbin and Metzler, Ralf}, title = {Fractional Brownian motion with random diffusivity}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {47}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aba467}, pages = {34}, year = {2020}, abstract = {Numerous examples for a priori unexpected non-Gaussian behaviour for normal and anomalous diffusion have recently been reported in single-particle tracking experiments. Here, we address the case of non-Gaussian anomalous diffusion in terms of a random-diffusivity mechanism in the presence of power-law correlated fractional Gaussian noise. We study the ergodic properties of this model via examining the ensemble- and time-averaged mean-squared displacements as well as the ergodicity breaking parameter EB quantifying the trajectory-to-trajectory fluctuations of the latter. For long measurement times, interesting crossover behaviour is found as function of the correlation time tau characterising the diffusivity dynamics. We unveil that at short lag times the EB parameter reaches a universal plateau. The corresponding residual value of EB is shown to depend only on tau and the trajectory length. The EB parameter at long lag times, however, follows the same power-law scaling as for fractional Brownian motion. We also determine a corresponding plateau at short lag times for the discrete representation of fractional Brownian motion, absent in the continuous-time formulation. These analytical predictions are in excellent agreement with results of computer simulations of the underlying stochastic processes. Our findings can help distinguishing and categorising certain nonergodic and non-Gaussian features of particle displacements, as observed in recent single-particle tracking experiments.}, language = {en} } @article{SinghMetzlerSandev2020, author = {Singh, Rishu Kumar and Metzler, Ralf and Sandev, Trifce}, title = {Resetting dynamics in a confining potential}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {50}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/abc83a}, pages = {28}, year = {2020}, abstract = {We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV).}, language = {en} } @misc{Metzler2020, author = {Metzler, Ralf}, title = {Superstatistics and non-Gaussian diffusion}, series = {The European physical journal special topics}, volume = {229}, journal = {The European physical journal special topics}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjst/e2020-900210-x}, pages = {711 -- 728}, year = {2020}, abstract = {Brownian motion and viscoelastic anomalous diffusion in homogeneous environments are intrinsically Gaussian processes. In a growing number of systems, however, non-Gaussian displacement distributions of these processes are being reported. The physical cause of the non-Gaussianity is typically seen in different forms of disorder. These include, for instance, imperfect "ensembles" of tracer particles, the presence of local variations of the tracer mobility in heteroegenous environments, or cases in which the speed or persistence of moving nematodes or cells are distributed. From a theoretical point of view stochastic descriptions based on distributed ("superstatistical") transport coefficients as well as time-dependent generalisations based on stochastic transport parameters with built-in finite correlation time are invoked. After a brief review of the history of Brownian motion and the famed Gaussian displacement distribution, we here provide a brief introduction to the phenomenon of non-Gaussianity and the stochastic modelling in terms of superstatistical and diffusing-diffusivity approaches.}, language = {en} } @article{FernandezCharcharCherstvyetal.2020, author = {Fernandez, Amanda Diez and Charchar, Patrick and Cherstvy, Andrey G. and Metzler, Ralf and Finnis, Michael W.}, title = {The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated}, series = {Physical chemistry, chemical physics}, volume = {22}, journal = {Physical chemistry, chemical physics}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d0cp03849k}, pages = {27955 -- 27965}, year = {2020}, abstract = {In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.}, language = {en} } @misc{WangCherstvyMetzleretal.2022, author = {Wang, Wei and Cherstvy, Andrey G. and Metzler, Ralf and Sokolov, Igor M.}, title = {Restoring ergodicity of stochastically reset anomalous-diffusion processes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56037}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560377}, pages = {013161-1 -- 013161-13}, year = {2022}, abstract = {How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle's motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems.}, language = {en} } @article{WangCherstvyMetzleretal.2022, author = {Wang, Wei and Cherstvy, Andrey G. and Metzler, Ralf and Sokolov, Igor M.}, title = {Restoring ergodicity of stochastically reset anomalous-diffusion processes}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, edition = {1}, publisher = {American Physical Society}, address = {College Park, Maryland, United States}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.013161}, pages = {013161-1 -- 013161-13}, year = {2022}, abstract = {How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle's motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems.}, language = {en} } @misc{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk: transport and first-passage dynamics under soft resetting strategies}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56040}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560402}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @article{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk}, series = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, number = {3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac5282}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @misc{GrebenkovMetzlerOshanin2021, author = {Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb}, title = {Distribution of first-reaction times with target regions on boundaries of shell-like domains}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55754}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557542}, pages = {1 -- 23}, year = {2021}, abstract = {We study the probability density function (PDF) of the first-reaction times between a diffusive ligand and a membrane-bound, immobile imperfect target region in a restricted 'onion-shell' geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered in diverse molecular signal transduction pathways or in the narrow escape problem with additional steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate form calculated by help of the so-called self-consistent approximation. For a particular case when the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF, assess the accuracy of this approximation, and discuss various facets of the obtained distributions. Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in multi-stage signal transduction processes.}, language = {en} } @article{GrebenkovMetzlerOshanin2021, author = {Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb}, title = {Distribution of first-reaction times with target regions on boundaries of shell-like domains}, series = {New Journal of Physics (NJP)}, volume = {2021}, journal = {New Journal of Physics (NJP)}, edition = {23}, publisher = {IOP Publishing}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac4282}, pages = {1 -- 23}, year = {2021}, abstract = {We study the probability density function (PDF) of the first-reaction times between a diffusive ligand and a membrane-bound, immobile imperfect target region in a restricted 'onion-shell' geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered in diverse molecular signal transduction pathways or in the narrow escape problem with additional steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate form calculated by help of the so-called self-consistent approximation. For a particular case when the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF, assess the accuracy of this approximation, and discuss various facets of the obtained distributions. Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in multi-stage signal transduction processes.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @misc{Metzler2017, author = {Metzler, Ralf}, title = {Anomalous Diffusion in Membranes and the Cytoplasm of Biological Cells}, series = {Biophysical journal}, volume = {112}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2016.11.2577}, pages = {476A -- 476A}, year = {2017}, language = {en} }