@phdthesis{Fellinger2011, author = {Fellinger, Tim-Patrick}, title = {Hydrothermal and ionothermal carbon structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57825}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The needs for sustainable energy generation, but also a sustainable chemistry display the basic motivation of the current thesis. By different single investigated cases, which are all related to the element carbon, the work can be devided into two major topics. At first, the sustainable synthesis of "useful" carbon materials employing the process of hydrothermal carbonisation (HC) is described. In the second part, the synthesis of heteroatom - containing carbon materials for electrochemical and fuel cell applications employing ionic liquid precursors is presented. On base of a thorough review of the literature on hydrothermolysis and hydrothermal carbonisation of sugars in addition to the chemistry of hydroxymethylfurfural, mechanistic considerations of the formation of hydrothermal carbon are proposed. On the base of these reaction schemes, the mineral borax, is introduced as an additive for the hydrothermal carbonisation of glucose. It was found to be a highly active catalyst, resulting in decreased reaction times and increased carbon yields. The chemical impact of borax, in the following is exploited for the modification of the micro- and nanostructure of hydrothermal carbon. From the borax - mediated aggregation of those primary species, widely applicable, low density, pure hydrothermal carbon aerogels with high porosities and specific surface areas are produced. To conclude the first section of the thesis, a short series of experiments is carried out, for the purpose of demonstrating the applicability of the HC model to "real" biowaste i.e. watermelon waste as feedstock for the production of useful materials. In part two cyano - containing ionic liquids are employed as precursors for the synthesis of high - performance, heteroatom - containing carbon materials. By varying the ionic liquid precursor and the carbonisation conditions, it was possible to design highly active non - metal electrocatalyst for the reduction of oxygen. In the direct reduction of oxygen to water (like used in polymer electrolyte fuel cells), compared to commercial platinum catalysts, astonishing activities are observed. In another example the selective and very cost efficient electrochemical synthesis of hydrogen peroxide is presented. In a last example the synthesis of graphitic boron carbon nitrides from the ionic liquid 1 - Ethyl - 3 - methylimidazolium - tetracyanoborate is investigated in detail. Due to the employment of unreactive salts as a new tool to generate high surface area these materials were first time shown to be another class of non - precious metal oxygen reduction electrocatalyst.}, language = {en} } @article{XieTaubert2011, author = {Xie, Zai-Lai and Taubert, Andreas}, title = {Thermomorphic behavior of the ionic liquids [C(4)mim][FeCl4] and [C(12)mim][FeCl4]}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201000808}, pages = {364 -- 368}, year = {2011}, abstract = {The iron-containing ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate(III) [C(4)mim][FeCl4] and 1-dodecyl-3-methylimidazolium tetrachloroferrate(III) [C(12)mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 degrees C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35\% in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow-brown liquid phase recovered after phase separation is the starting IL [C(4)mim][FeCl4] and [C(12)mim][FeCl4], respectively. Photometry and ICP-OES show that about 40\% of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal-containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.}, language = {en} } @phdthesis{Goebel2011, author = {G{\"o}bel, Ronald}, title = {Hybridmaterialien aus mesopor{\"o}sen Silica und ionischen Fl{\"u}ssigkeiten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54022}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und Charakterisierung mesopor{\"o}ser monolithischer Silica und deren Hybridmaterialien mit Ionischen Fl{\"u}ssigkeiten (ILs, ionic liquids). Zur Synthese der Silicaproben wurde ein Sol-Gel-Verfahren, ausgehend von einer Pr{\"a}kursorverbindung wie Tetramethylorthosilicat angewendet. Der Katalysator mit der geringsten Basizit{\"a}t f{\"u}hrte zum Material mit der kleinsten Porengr{\"o}ße und der gr{\"o}ßten spezifischen Oberfl{\"a}che. Eine Kombination von por{\"o}sen Silica mit ILs f{\"u}hrt zur Materialklasse der Silica-Ionogele. Diese Hybridmaterialien verbinden die Eigenschaften eines por{\"o}sen Festk{\"o}rpers mit denen einer IL (Leitf{\"a}higkeit, weites elektrochemisches Fenster, gute thermische Stabilit{\"a}t) und bieten vielf{\"a}ltige Einsatzm{\"o}glichkeiten z.B. in der Katalyse- Solar- und Sensortechnik. Um diese Materialien f{\"u}r ihren Verwendungszweck zu optimieren, bedarf es deren umfassenden Charakterisierung. Daher wurde in der vorliegenden Arbeit das thermische Verhalten von Silica-Ionogelen unter Verwendung verschiedener 1-Ethyl-3-methylimidazolium [Emim]-basierter ILs untersucht. Interessanterweise zeigen die untersuchten ILs deutliche {\"A}nderungen in ihrem thermischen Verhalten, wenn diese in por{\"o}sen Materialien eingeschlossen werden (Confinement). W{\"a}hrend sich die untersuchten reinen ILs durch klar unterscheidbare Phasen{\"u}berg{\"a}nge auszeichnen, konnten f{\"u}r die entsprechenden Hybridmaterialien deutlich schw{\"a}cher ausgepr{\"a}gte {\"U}berg{\"a}nge beobachtet werden. Einzelne Phasen{\"u}berg{\"a}nge wurden unterdr{\"u}ckt (Glas- und Kristallisations{\"u}berg{\"a}nge), w{\"a}hrend z.B. Schmelz{\"u}berg{\"a}nge in verbreiterten Temperaturbereichen, zum Teil als einzeln getrennte Schmelzpeaks beobachtet wurden. Diese Untersuchungen belegen deutliche Eigenschafts{\"a}nderungen der ILs in eingeschr{\"a}nkten Geometrien. {\"U}ber Festk{\"o}rper-NMR-Spektroskopie konnte außerdem gezeigt werden, daß die ILs in den mesopor{\"o}sen Silicamaterialien eine unerwartet hohe Mobilit{\"a}t aufweisen. Die ILs k{\"o}nnen als quasi-fl{\"u}ssig bezeichnet werden und zeigen die nach bestem Wissen h{\"o}chste Mobilit{\"a}t, die bisher f{\"u}r vergleichbare Hybridmaterialien beobachtet wurde. Durch Verwendung von funktionalisierten Pr{\"a}kursoren, sowie der Wahl der Reaktionsbedingungen, kann die Oberfl{\"a}che der Silicamaterialien chemisch funktionalisiert werden und damit die Materialeigenschaften in der gew{\"u}nschten Weise beeinflußt werden. In der vorliegenden Arbeit wurde der Einfluß der Oberfl{\"a}chenfunktionalit{\"a}t auf das thermische Verhalten hin untersucht. Dazu wurden zwei verschiedene M{\"o}glichkeiten der Funktionalisierung angewendet und miteinander verglichen. Bei der in-situ-Funktionalisierung wird die chemische Funktionalit{\"a}t w{\"a}hrend der Sol-Gel-Synthese {\"u}ber ein entsprechend funktionalisiertes Silan mit in das Silicamaterial einkondensiert. Eine postsynthetische Funktionalisierung erfolgt durch Reaktion der Endgruppen eines Silicamaterials mit geeigneten Reaktionspartnern. Um den Einfluß der physikalischen Eigenschaften der Probe auf die Reaktion zu untersuchen, wurden pulverisierte und monolithische Silicamaterialien miteinander verglichen. Im letzten Teil der Arbeit wurde die Vielf{\"a}ltigkeit, mit der Silicamaterialien postsynthetisch funktionalisiert werden k{\"o}nnen demonstriert. Durch die Kenntnis von Struktur-Eigenschaftsbeziehungen k{\"o}nnen die Eigenschaften von Silica-Ionogelen durch die geeignete Kombination von fester und mobiler Phase in der gew{\"u}nschten Weise ver{\"a}ndert werden. Die vorliegende Arbeit soll einen Beitrag zur Untersuchung dieser Beziehungen leisten, um das Potential dieser interessanten Materialien f{\"u}r Anwendungen nutzen zu k{\"o}nnen.}, language = {de} }