@article{GonzalezChavarriaDupratRoaetal.2020, author = {Gonzalez-Chavarria, Ivan and Duprat, Felix and Roa, Francisco J. and Jara, Nery and Toledo, Jorge R. and Miranda, Felipe and Becerra, Jose and Inostroza, Alejandro and Kelling, Alexandra and Schilde, Uwe and Heydenreich, Matthias and Paz, Cristian}, title = {Maytenus disticha extract and an isolated β-Dihydroagarofuran induce mitochondrial depolarization and apoptosis in human cancer cells by increasing mitochondrial reactive oxygen species}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10030377}, pages = {15}, year = {2020}, abstract = {Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth regulatory and insecticidal activities. beta-Dihydroagarofurans sesquiterpenes are the most active components in the plant. However, its activity in cancer has not been analyzed yet. Here, we demonstrate that MD has a cytotoxic activity on breast (MCF-7), lung (PC9), and prostate (C4-2B) human cancer cells with an IC50 (mu g/mL) of 40, 4.7, and 5 mu g/mL, respectively, an increasing Bax/Bcl2 ratio, and inducing a mitochondrial membrane depolarization. The beta-dihydroagarofuran-type sesquiterpene (MD-6), dihydromyricetin (MD-9), and dihydromyricetin-3-O-beta-glucoside (MD-10) were isolated as the major compounds from MD extracts. From these compounds, only MD-6 showed cytotoxic activity on MCF-7, PC9, and C4-2B with an IC50 of 31.02, 17.58, and 42.19 mu M, respectively. Furthermore, the MD-6 increases cell ROS generation, and MD and MD-6 induce a mitochondrial superoxide generation and apoptosis on MCF-7, PC9, and C4-2B, which suggests that the cytotoxic effect of MD is mediated in part by the beta-dihydroagarofuran-type that induces apoptosis by a mitochondrial dysfunction.}, language = {en} } @article{KruegerKellingSchildeetal.2016, author = {Kr{\"u}ger, Tobias and Kelling, Alexandra and Schilde, Uwe and Linker, Torsten}, title = {Simple Synthesis of gamma-Spirolactams by Birch Reduction of Benzoic Acids}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201601650}, pages = {1074 -- 1077}, year = {2016}, abstract = {A convenient synthesis of gamma-spirolactams in only two steps was developed. Birch reduction of benzoic acids and immediate alkylation with chloroacetonitrile afforded cyclohexadienes in high yields. The products could be isolated by crystallization on a large scale in analytically pure form. Subsequent hydrogenation with platinum(IV) oxide as the catalyst reduced the nitrile functionality and the double bonds in the same step with excellent stereoselectivity. The relative configurations were determined unequivocally by X-ray analyses. Direct cyclization of the intermediary formed amino acids afforded the desired gamma-spirolactams in excellent overall yields. The procedure is characterized by few steps, cheap reagents, and can be performed on a large scale, interesting for industrial processes.}, language = {en} } @article{LeeHwangSchildeetal.2018, author = {Lee, Hui-Chun and Hwang, Jongkook and Schilde, Uwe and Antonietti, Markus and Matyjaszewski, Krzysztof and Schmidt, Bernhard V. K. J.}, title = {Toward ultimate control of radical polymerization}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00546}, pages = {2983 -- 2994}, year = {2018}, abstract = {Herein, an approach via combination of confined porous textures and reversible deactivation radical polymerization techniques is proposed to advance synthetic polymer chemistry, i.e., a connection of metal-organic frameworks (MOFs) and activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). Zn-2(benzene-1,4-dicarboxylate)2(1,4-diazabicyclo[2.2.2]-octane) [Zn-2(bdc)(2)(dabco)] is utilized as a reaction environment for polymerization of various methacrylate monomers (methyl, ethyl, benzyl, and isobornyl methacrylate) in a confined nanochannel, resulting in polymers with control over dispersity, end functionalities, and tacticity with respect to distinct molecular size. To refine and reconsolidate the compartmentation effect on polymer regularity, initiator-functionalized Zn MOF was synthesized via cocrystallization with an initiator-functionalized ligand, 2-(2-bromo-2-methylpropanamido)-1,4-benzenedicarboxylate (Brbdc), in different ratios (10\%, 20\%, and 50\%). Through the embedded initiator, surface-initiated ARGET ATRP was directly initiated from the walls of the nanochannels. The obtained polymers had a high molecular weight up to 392 000. Moreover, a significant improvement in end-group functionality and stereocontrol was observed, entailing polymers with obvious increments in isotacticity. The results highlight a combination of MOFs and ATRP that is a promising and universal methodology to prepare various polymers with high molecular weight exhibiting well-defined uniformity in chain length and microstructure as well as the preserved chain-end functionality.}, language = {en} } @article{SardarianInalooModarresiAlametal.2019, author = {Sardarian, Ali Reza and Inaloo, Iman Dindarloo and Modarresi-Alam, Ali Reza and Kleinpeter, Erich and Schilde, Uwe}, title = {Metal-Free Regioselective Monocyanation of Hydroxy-, Alkoxy-, and Benzyloxyarenes by Potassium Thiocyanate and Silica Sulfuric Acid as a Cyanating Agent}, series = {The journal of organic chemistry}, volume = {84}, journal = {The journal of organic chemistry}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.8b02191}, pages = {1748 -- 1756}, year = {2019}, abstract = {A novel and efficient metal- and solvent-free regioselective para-C-H cyanation of hydroxy-, alkoxy-, and benzyloxyarene derivatives has been introduced, using nontoxic potassium thiocyanate as a cyanating reagent in the presence of silica sulfuric acid (SSA). The desired products are obtained in good to high yields without any toxic byproducts.}, language = {en} } @article{AlrefaiMondalWrucketal.2019, author = {Alrefai, Anas and Mondal, Suvendu Sekhar and Wruck, Alexander and Kelling, Alexandra and Schilde, Uwe and Brandt, Philipp and Janiak, Christoph and Schoenfeld, Sophie and Weber, Birgit and Rybakowski, Lawrence and Herrman, Carmen and Brennenstuhl, Katlen and Eidner, Sascha and Kumke, Michael Uwe and Behrens, Karsten and G{\"u}nter, Christina and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties}, series = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, volume = {94}, journal = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {1388-3127}, doi = {10.1007/s10847-019-00926-6}, pages = {155 -- 165}, year = {2019}, abstract = {By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework.}, language = {en} } @article{MovahedifarModarresiAlamKleinpeteretal.2017, author = {Movahedifar, Fahimeh and Modarresi-Alam, Ali Reza and Kleinpeter, Erich and Schilde, Uwe}, title = {Dynamic H-1-NMR study of unusually high barrier to rotation about the partial C-N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles}, series = {Journal of molecular structure}, volume = {1133}, journal = {Journal of molecular structure}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-2860}, doi = {10.1016/j.molstruc.2016.12.010}, pages = {244 -- 252}, year = {2017}, abstract = {The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic H-1-NMR via rotation about C-N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol(-1) respectively, attributed to the conformational isomerization about the Me2N-C=O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol(-1), respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond C-N character. It also demonstrates the synperiplanar position of C=O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LY12/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1\&\#8242;-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, publisher = {De Gruyter}, address = {Berlin}, issn = {1433-7266}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I4(1)/a (no. 88), a = 13.8885(6) angstrom, c = 13.6718(6) angstrom, V = 2637.2(3) angstrom(3), Z = 8, R-gt(F) = 0.0295, wR(ref)(F-2) = 0.0854, T = 210 K.}, language = {en} } @article{MondalHovestadtDeyetal.2017, author = {Mondal, Suvendu Sekhar and Hovestadt, Maximilian and Dey, Subarna and Paula, Carolin and Glomb, Sebastian and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Hartmann, Martin and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce01438d}, pages = {5882 -- 5891}, year = {2017}, abstract = {The separation of ethane/ethene mixtures (as well as other paraffin/olefin mixtures) is one of the most important but challenging processes in the petrochemical industry. In this work, we report the synthesis of ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole (L1) and 2-trifluoromethylimidazole (L2) (ZIF-318 = [(Zn(L1)(L2)](n)). The synthesis has been optimized to proceed without ZnO-formation. Using only the L2 linker under solvothermal conditions afforded ZnO-embedded in the H-bonded and non-porous coordination polymer ZnO@[Zn-2(L2)(2)(HCOO)(OH)](n). The slight differences in the size of the substituents (-CH3 vs. -CF3) possibly in combination with different electronic inductive effects led to small but significant changes to the pore size and properties respectively, though the effective pore opening (aperture) size of ZIF-318 remained the same in comparison with ZIF-8. ZIF-318 is chemically (boiling water, methanol, benzene, and wide pH range at room temperature for 1 day), thermally (up to 310 degrees C) stable, and more hydrophobic than ZIF-8 which is proven by contact angle measurement. ZIF-318 can be activated for N-2, CO2, CH4, H-2, ethane, ethane, propane, and propene gases sorptions. Consequently, in breakthrough experiments, the ethane/ethene mixtures can be separated.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{StrauchKossmannKellingetal.2016, author = {Strauch, Peter and Kossmann, Alexander and Kelling, Alexandra and Schilde, Uwe}, title = {EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice - structure and spectroscopy}, series = {Chemical papers}, volume = {70}, journal = {Chemical papers}, publisher = {De Gruyter}, address = {Berlin}, issn = {0366-6352}, doi = {10.1515/chempap-2015-0154}, pages = {61 -- 68}, year = {2016}, abstract = {EPR spectroscopy is a well suited analytical tool to monitor the electronic situation around paramagnetic metal centres as copper(II) and therefore the structural influences on the paramagnetic ion. 1,2-Dithiosquaratometalates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. Synthesis and characterisation of bis(benzyltributylammonium)1,2-dithiosquaratonickelate(II), (BzlBu(3)N)(2)[Ni(dtsq)(2)], and bis(benzyltributylammonium)1,2-dithiosquaratocuprate(II), (BzlBu(3)N)(2)[Cu(dtsq)(2)], with benzyltributylammonium as the counter ion is reported and the X-ray structures of two complexes, (BzlBu(3)N)(2)[Ni(dtsq)(2)] and (BzlBu(3)N)(2)[Cu(dtsq)(2)], are presented. Both complexes, crystallising in the monoclinic space group P2(1)/c, are isostructural with only small differences in the coordination sphere due to the different metal ions. The diamagnetic nickel complex is therefore well suited as a host lattice for the paramagnetic Cu(II) complex to measure EPR for additional structural information. (c) 2015 Institute of Chemistry, Slovak Academy of Sciences}, language = {en} } @article{BrietzkeKellingSchildeetal.2016, author = {Brietzke, Thomas Martin and Kelling, Alexandra and Schilde, Uwe and Mickler, Wulfhard and Holdt, Hans-J{\"u}rgen}, title = {Heterodinuclear Ruthenium(II) Complexes of the Bridging Ligand 1,6,7,12-Tetraazaperylene with Iron(II), Cobalt(II), Nickel(II), as well as Palladium(II) and Platinum(II)}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500645}, pages = {8 -- 13}, year = {2016}, abstract = {The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12-tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) ligand, yielding complexes of the general formula [(L-N4Me2)Ru(mu-tape)M(L-N4Me2)](ClO4)(2)(PF6)(2) with M = Fe {[2](ClO4)(2)(PF6)(2)}, Co {[3](ClO4)(2)(PF6)(2)}, and Ni {[4](ClO4)(2)(PF6)(2)}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)- and platinum(II)-dichloride [(bpy)(2)Ru(-tape)PdCl2](PF6)(2) {[5](PF6)(2)} and [(dmbpy)(2)Ru(-tape)PtCl2](PF6)(2) {[6](PF6)(2)}, respectively were also prepared. The molecular structures of the complex cations [2](4+) and [4](4+) were discussed on the basis of the X-ray structures of [2](ClO4)(4)MeCN and [4](ClO4)(4)MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono- and homodinuclear ruthenium(II) complexes of the tape bridging ligand.}, language = {en} } @article{BaierKellingSchildeetal.2016, author = {Baier, Heiko and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500625}, pages = {140 -- 147}, year = {2016}, abstract = {The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] (4) [IMes = 1,3-bis(mesityl) imidazol-2-ylidene] and [PdCl(ppy){(CN)(2)IMes}] (6) [(CN)(2)IMes = 4,5-dicyano-1,3-bis(mesityl) imidazol-2-ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2-phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)](2). Suitable crystals for the X-ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC-palladium bond than the IMes complex 4. The difference of the palladium carbene bond lengths based on the higher pi-acceptor strength of (CN)(2)IMes in comparison to IMes. Thus, (CN)(2)IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the pi-acceptor strength of (CN)(2)IMes compared to IMes, the selone (CN)(2)IMes center dot Se (7) was prepared and characterized by Se-77-NMR spectroscopy. The pi-acceptor strength of 7 was illuminated by the shift of its Se-77-NMR signal. The Se-77-NMR signal of 7 was shifted to much higher frequencies than the Se-77-NMR signal of IMes center dot Se. Catalytic experiments using the Mizoroki-Heck reaction of aryl chlorides with n-butyl acrylate showed that 6 is the superior performer in comparison to 4. Using complex 6, an extensive substrate screening of 26 different aryl bromides with n-butyl acrylate was performed. Complex 6 is a suitable precatalyst for para-substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.}, language = {en} } @article{WessigGerngrossFreyseetal.2016, author = {Wessig, Pablo and Gerngross, Maik and Freyse, Daniel and Bruhn, P. and Przezdziak, Marc and Schilde, Uwe and Kelling, Alexandra}, title = {Molecular Rods Based on Oligo-spiro-thioketals}, series = {The journal of organic chemistry}, volume = {81}, journal = {The journal of organic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b02670}, pages = {1125 -- 1136}, year = {2016}, abstract = {We report on an extension of the previously established concept of oligospiroketal (OSK) rods by replacing a part or all ketal moieties by thioketals leading to oligospirothioketal (OSTK) rods. In this way, some crucial problems arising from the reversible formation of ketals are circumvented. Furthermore, the stability of the rods toward hydrolysis is considerably improved. To successfully implement this concept, we first developed a number of new oligothiol building blocks and improved the synthetic accessibility of known oligothiols, respectively. Another advantage of thioacetals is that terephthalaldehyde (TAA) sleeves, which are too flexible in the case of acetals can be used in OSTK rods. The viability of the OSTK approach was demonstrated by the successful preparation of some OSTK rods with a length of some nanometers.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andre and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and g(perpendicular to)) of the tensors could be determined and information on the structural changes in the [CuBr4](2-) anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @article{MondalBhuniaAttallahetal.2016, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Attallah, Ahmed G. and Matthes, Philipp R. and Kelling, Alexandra and Schilde, Uwe and M{\"u}ller-Buschbaum, Klaus and Krause-Rehberg, Reinhard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides}, series = {Chemistry - a European journal}, volume = {22}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201504757}, pages = {6905 -- 6913}, year = {2016}, abstract = {An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions.}, language = {en} } @article{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, series = {New journal of chemistry}, volume = {40}, journal = {New journal of chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c5nj03337c}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @article{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, series = {Acta crystallographica, Section E, Crystallographic communications}, volume = {72}, journal = {Acta crystallographica, Section E, Crystallographic communications}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2056-9890}, doi = {10.1107/S2056989016018727}, pages = {1839 -- +}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis(acetyloxy)-7-oxo-2-oxabicyclo-[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acetyloxy-7-hydroxyimino-2-oxobicyclo[4.2.0] octan-4-yl acetate, C11H15NO6, (II), and [(3aR, 5R, 6R, 7R, 7aS)-6,7-bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5-yl] methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @misc{KirsteBrietzkeHoldtetal.2019, author = {Kirste, Matthias and Brietzke, Thomas Martin and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {752}, issn = {1866-8372}, doi = {10.25932/publishup-43650}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436501}, pages = {3}, year = {2019}, abstract = {C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) {\AA}, b=11.4021(14) {\AA}, c=13.3572(15) {\AA}, β=105.363(8)°, V =1164.5(2) {\AA}³, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K.}, language = {en} } @article{KirsteBrietzkeHoldtetal.2019, author = {Kirste, Matthias and Brietzke, Thomas Martin and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {234}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {6}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7105}, doi = {10.1515/NCRS-2019-0385}, pages = {1255 -- 1257}, year = {2019}, abstract = {C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) {\AA}, b=11.4021(14) {\AA}, c=13.3572(15) {\AA}, β=105.363(8)°, V =1164.5(2) {\AA}³, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K.}, language = {en} } @article{KruegerKellingLinkeretal.2019, author = {Krueger, Tobias and Kelling, Alexandra and Linker, Torsten and Schilde, Uwe}, title = {Crystal structures of three cyclohexane‑based γ‑spirolactams}, series = {BMC Chemistry}, volume = {13}, journal = {BMC Chemistry}, number = {69}, publisher = {Springer International Publishing}, address = {Basel}, issn = {2661-801X}, doi = {10.1186/s13065-019-0586-7}, pages = {9}, year = {2019}, abstract = {The title compounds, 2-azaspiro[4.5]deca-1-one, C₉H₁₅NO, (1a), cis-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1b), and trans-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1c), were synthesized from benzoic acids 2 in only 3 steps in high yields. Crystallization from n-hexane afforded single crystals, suitable for X-ray diffraction. Thus, the configurations, conformations, and interesting crystal packing effects have been determined unequivocally. The bicyclic skeleton consists of a lactam ring, attached by a spiro junction to a cyclohexane ring. The lactam ring adopts an envelope conformation and the cyclohexane ring has a chair conformation. The main difference between compound 1b and compound 1c is the position of the carbonyl group on the 2-pyrrolidine ring with respect to the methyl group on the 8-position of the cyclohexane ring, which is cis (1b) or trans (1c). A remarkable feature of all three compounds is the existence of a mirror plane within the molecule. Given that all compounds crystallize in centrosymmetric space groups, the packing always contains interesting enantiomer-like pairs. Finally, the structures are stabilized by intermolecular N-H···O hydrogen bonds.}, language = {en} } @misc{KruegerKellingLinkeretal.2019, author = {Krueger, Tobias and Kelling, Alexandra and Linker, Torsten and Schilde, Uwe}, title = {Crystal structures of three cyclohexane‑based γ‑spirolactams}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {738}, doi = {10.25932/publishup-43491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434911}, pages = {9}, year = {2019}, abstract = {The title compounds, 2-azaspiro[4.5]deca-1-one, C₉H₁₅NO, (1a), cis-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1b), and trans-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1c), were synthesized from benzoic acids 2 in only 3 steps in high yields. Crystallization from n-hexane afforded single crystals, suitable for X-ray diffraction. Thus, the configurations, conformations, and interesting crystal packing effects have been determined unequivocally. The bicyclic skeleton consists of a lactam ring, attached by a spiro junction to a cyclohexane ring. The lactam ring adopts an envelope conformation and the cyclohexane ring has a chair conformation. The main difference between compound 1b and compound 1c is the position of the carbonyl group on the 2-pyrrolidine ring with respect to the methyl group on the 8-position of the cyclohexane ring, which is cis (1b) or trans (1c). A remarkable feature of all three compounds is the existence of a mirror plane within the molecule. Given that all compounds crystallize in centrosymmetric space groups, the packing always contains interesting enantiomer-like pairs. Finally, the structures are stabilized by intermolecular N-H···O hydrogen bonds.}, language = {en} } @misc{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401952}, pages = {3}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, number = {5}, publisher = {de Gruyter}, address = {Berlin}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @misc{SchildePazOrtiz2017, author = {Schilde, Uwe and Paz, Christian and Ortiz, Leandro}, title = {Crystal structure of erioflorin isolated from Podanthus mitiqui (L.)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401832}, pages = {4}, year = {2017}, abstract = {The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a, 2,3,5a, 7,8,8a, 9,10,10a-decahydro-3-hydroxy-4,10a-dimethyl-8-methylidene-7-oxooxireno[5,6] cyclodeca[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the space group P2(1)2(1)2(1), and its molecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C-H center dot center dot center dot O hydrogen bond. An O-H center dot center dot center dot O hydrogen bond and further C-H center dot center dot center dot O interactions can be observed in the packing.}, language = {en} } @article{SchildePazOrtiz2017, author = {Schilde, Uwe and Paz, Christian and Ortiz, Leandro}, title = {Crystal structure of erioflorin isolated from Podanthus mitiqui (L.)}, series = {Acta Crystallographica Section E : Crystallographic Communications}, volume = {73}, journal = {Acta Crystallographica Section E : Crystallographic Communications}, number = {3}, publisher = {International Union of Crystallography}, address = {Chester}, doi = {10.1107/S2056989017001700}, pages = {334 -- 337}, year = {2017}, abstract = {The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a, 2,3,5a, 7,8,8a, 9,10,10a-decahydro-3-hydroxy-4,10a-dimethyl-8-methylidene-7-oxooxireno[5,6] cyclodeca[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the space group P2(1)2(1)2(1), and its molecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C-H center dot center dot center dot O hydrogen bond. An O-H center dot center dot center dot O hydrogen bond and further C-H center dot center dot center dot O interactions can be observed in the packing.}, language = {en} } @misc{MirskovaAdamovichMirskovetal.2017, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Reaction of pharmacological active tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401099}, pages = {5}, year = {2017}, abstract = {The reaction of pharmacological active protic ionic liquid tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate H + N(CH 2 CH 2 OH) 3 ∙ ( - OOCCH 2 SC 6 H 4 Cl-4) (1) with zinc or nickel chloride in a ratio of 2:1 affords stable at room temperature powder-like adducts [H + N(CH 2 CH 2 OH) 3 ] 2 ∙ [M(OOCCH 2 SC 6 H 4 Cl-4) 2 Cl 2 ] 2- , M = Zn (2), Ni (3). By recrystallization from aqueous alcohol compound 2 unexpectedly gives Zn(OOCCH 2 SC 6 H 4 Cl-4) 2 ∙ 2H 2 O (4). Unlike 2, compound 3 gives crystals [N(CH 2 CH 2 OH) 3 ] 2 Ni 2+ · [ - OOCCH 2 SC 6 H 4 Cl-4] 2 (5), which have a structure of metallated ionic liquid. The structure of 5 has been proved by X-ray diffraction analysis. It is the first example of the conversion of a protic ionic liquid into potentially biological active metallated ionic liquid (1 → 3 → 5).}, language = {en} } @misc{AdamovichMirskovaMirskovetal.2017, author = {Adamovich, Sergey N. and Mirskova, Anna N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Synthesis and crystal structure of 1,4,10,13-tetraoxa-7,16-diazoniumcyclo-octadecane bis(4-chloro-2-methyl-phenoxyacetate)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400905}, pages = {4}, year = {2017}, abstract = {The title compound was prepared by the reaction of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane with 4-chloro-2-methyl-phenoxyacetic acid in a ratio of 1:2. The structure has been proved by the data of elemental analysis, IR spectroscopy, NMR ( 1 H, 13 C) technique and by X-ray diffraction analysis. Intermolecular hydrogen bonds between the azonium protons and oxygen atoms of the carboxylate groups were found. Immunoactive properties of the title compound have been screened. The compound has the ability to suppress spontaneous and Con A-stimulated cell proliferation in vitro and therefore can be considered as immunodepressant.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @misc{KoenigKellingSchildeetal.2017, author = {K{\"o}nig, Jana and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {[µ2-O,O′,Oʺ,Oʺ′-Bis(1,2-dithiooxalato-S,S′)nickel(II)]bis[-O,O′-bis(1,2-dithiooxalato-S,S′)-nickel(II)pentaquaholmium(III)]hydrate, [Ho2Ni3(dto)6(H2O)10]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400598}, pages = {5}, year = {2017}, abstract = {Planar bis(1,2-dithiooxalato)nickelate(II), [Ni(dto)]2- reacts in aqueous solutions with lanthanide ions (Ln3+) to form pentanuclear, hetero-bimetallic complexes of the general composition [{Ln(H2O)n}2{Ni(dto)2}3]·xH2O. (n = 4 or 5; x = 9-12). The complex [{Ho(H2O)5}2{Ni(dto)2}3]·10H2O, Ho2Ni3, was synthesized and characterized by single crystal X-ray structure analysis and powder diffraction. The Ho2Ni3 complex crystallizes as monoclinic crystals in the space group P21/c. The channels and cavities, appearing in the crystal packing of the complex molecules, are occupied by a varying amount of non-coordinated water molecules.}, language = {en} } @misc{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394488}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @article{MirskovaAdamovichMirskovetal.2015, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Kolesnikova, Olga P. and Schilde, Uwe}, title = {Immunoactive ionic liquids based on 2-hydroxyethylamines and 1-R-indol-3-ylsulfanylacetic acids. Crystal and molecular structure of immunodepressant tris-(2-hydroxyethyl)ammonium indol-3-ylsulfanylacetate}, series = {Open chemistry : formerly Central European journal of chemistry}, volume = {13}, journal = {Open chemistry : formerly Central European journal of chemistry}, number = {1}, publisher = {De Gruyter Open}, address = {Warsaw}, issn = {2391-5420}, doi = {10.1515/chem-2015-0018}, pages = {149 -- 155}, year = {2015}, abstract = {Immunoactive ionic liquids (2-hydroxyethyl) ammonium 1-R-indol-3-ylsulfanyl-acetates HN+R1R2(CH2CH2OH)center dot O-(O)CCH2S-Ind-R-3-1(1-5), were synthesized by the reaction of (2-hydroxyethyl)amines with indol-3-ylsulfanylacetic- or 1-benzylindol-3-ylsulfanylacetic acid. 1: R-1 = R-2 = CH2CH2OH, R-3 = H; 2: R-1 =CH3, R-2=CH2CH2OH, R3 = H; 3: R-1 = R-2 = CH3, R-3 = H; 4: R-1 = R-2 = CH2CH2OH, R-3 = CH2C6H5; 5: R-1 = CH3; R-2 = CH2CH2OH; R-3 = CH2C6H5. The structure of each compound was elucidated by IR, NMR H-1, C-13, and N-15 techniques and their composition was confirmed by elemental analysis. The crystal structure of tris-(2-hydroxyethyl) ammonium indol-3-ylsulfanylacetate was investigated by X-ray diffraction analysis. Immunoactive properties of the title compounds were screened.}, language = {en} } @article{StrauchNeumannKellingetal.2015, author = {Strauch, Peter and Neumann, Mike and Kelling, Alexandra and Schilde, Uwe}, title = {Bis(1,2-dithiosquarato)nickelates(II): Synthesis, Structure, EPR and Thermal Behavior}, series = {Acta chimica Slovenica}, volume = {62}, journal = {Acta chimica Slovenica}, number = {2}, publisher = {Drustvo}, address = {Ljubljana}, issn = {1318-0207}, pages = {288 -- 296}, year = {2015}, abstract = {1,2-Dithiosquaratonickelates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. The synthesis and characterization, including mass spectrometry, of a series 1,2-dithiosquaratonickelates(II), [Ni(dtsq)(2)](2-), with several "onium" cations is reported and the X-ray structures of two diamagnetic complexes, (HexPh(3)P)(2)[Ni(dtsq)(2)] and (BuPh3P)(2)[Ni(dtsq)(2)] with sterically demanding counter ions are presented. The diamagnetic nickel complexes have been doped as host lattices with traces of Cu(II) to measure EPR for additional structural information. The thermal behavior of this series is studied by thermogravimetry and differential thermal analysis (TG/DTA). The thermolysis in air as well as under nitrogen atmosphere of these complexes results in nickel oxide nano-particles in all cases, which are characterized by X-ray powder diffraction.}, language = {en} } @article{SchmidtElizarovSchildeetal.2015, author = {Schmidt, Bernd and Elizarov, Nelli and Schilde, Uwe and Kelling, Alexandra}, title = {Dual Role of Acetanilides: Traceless Removal of a Directing Group through Deacetylation/Diazotation and Palladium-Catalyzed C-C-Coupling Reactions}, series = {The journal of organic chemistry}, volume = {80}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b00272}, pages = {4223 -- 4234}, year = {2015}, abstract = {The acetamide group enables regioselective oxidative ortho-C-H activation reactions, such as Pd-catalyzed acylation. The synthetic utility of these transformations can be significantly enhanced by using the acetamide as a quasi-leaving group in a subsequent conventional Pd-catalyzed coupling or cross-coupling reaction. The concept is illustrated herein for the synthesis of o-alkenyl- and o-arylphenones, which have potential for the synthesis of arylated aromatic heterocycles.}, language = {en} } @article{MondalBehrensKellingetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Kelling, Alexandra and Nabein, Hans-Peter and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {641}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500526}, pages = {1991 -- 1997}, year = {2015}, abstract = {Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom.}, language = {en} } @article{SchmidtRiemerSchilde2015, author = {Schmidt, Bernd and Riemer, Martin and Schilde, Uwe}, title = {Tandem Claisen Rearrangement/6-endo Cyclization Approach to Allylated and Prenylated Chromones}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {34}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201501151}, pages = {7602 -- 7611}, year = {2015}, abstract = {Allyl, dimethylallyl and prenyl ethers derived from o-acyl-phenols reacted upon microwave irradiation to form C-allylated or -prenylated chromone derivatives, depending on the substitution pattern of the arene and the allyl substituent. The reaction proceeds through a tandem Claisen rearrangement and 6-endo-trig or 6-endo-dig cyclization sequence. For prenyl ethers, the tandem sequence can be extended by a Cope rearrangement to furnish 6-prenylchromones. The method is potentially useful for the synthesis of natural products and drugs.}, language = {en} } @article{MondalBhuniaDemeshkoetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshko, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties}, series = {CrystEngComm}, volume = {16}, journal = {CrystEngComm}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c3ce42040j}, pages = {39 -- 42}, year = {2014}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N-2, CO2, CH4 and H-2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @article{WinterThielZabeletal.2014, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andre and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II)}, series = {New journal of chemistry}, volume = {38}, journal = {New journal of chemistry}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c3nj01039b}, pages = {1019 -- 1030}, year = {2014}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4](2-) moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium) tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4](2-) anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g(parallel to) and g(perpendicular to), could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} } @article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {A supramolecular Co(II)(14)- metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent}, series = {Chemical communications}, volume = {50}, journal = {Chemical communications}, number = {41}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c3cc49698h}, pages = {5441 -- 5443}, year = {2014}, abstract = {The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)(2.) 6H(2)O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)(14)-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms.}, language = {en} } @article{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Giant Zn-14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja410595q}, pages = {44 -- 47}, year = {2014}, abstract = {In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn-14(L2)(12)(O)-(OH)(2)(H2O)(4)] molecular building block (MBB) with a Zn-6 octahedron inscribed in a Zn-8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N-2, CO2, CH4, and H-2 gas sorption.}, language = {en} } @article{MondalMuellerJungingeretal.2014, author = {Mondal, Suvendu Sekhar and Mueller, Holger and Junginger, Matthias and Kelling, Alexandra and Schilde, Uwe and Strehmel, Veronika and Holdt, Hans-J{\"u}rgen}, title = {Imidazolium 2-substituted 4,5-dicyanoimidazolate ionic liquids: synthesis, crystal structures and structure-thermal property relationships}, series = {Chemistry - a European journal}, volume = {20}, journal = {Chemistry - a European journal}, number = {26}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201304934}, pages = {8170 -- 8181}, year = {2014}, abstract = {Thirty six novel ionic liquids (ILs) with 1-butyl-3-methylimidazolium and 3-methyl-1-octylimidazolium cations paired with 2-substitited 4,5-dicyanoimidazolate anions (substituent at C2=chloro, bromo, methoxy, vinyl, amino, methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and phenyl) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and single-crystal X-ray crystallography. The effects of cation and anion type and structure on the thermal properties of the resulting ionic liquids, including several room temperature ionic liquids (RTILs) are examined and discussed. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -68 degrees C. The effects of alkyl substituents of the imidazolate anion reflected the crystallization, melting points and thermal decomposition of the ILs. The Coulombic packing force, van der Waals forces and size of the anions can be considered for altering the thermal transitions. Three crystal structures of the ILs were determined and the effects of changes to the cations and anions on the packing of the structure were investigated.}, language = {en} } @article{ShainyanMoskalikAstakhovaetal.2014, author = {Shainyan, Bagrat A. and Moskalik, Mikhail Yu and Astakhova, Vera V. and Schilde, Uwe}, title = {Novel design of 3,8-diazabicyclo[3.2.1]octane framework in oxidative sulfonamidation of 1,5-hexadiene}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {30}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.04.095}, pages = {4547 -- 4551}, year = {2014}, abstract = {1,5-Hexadiene reacts with trifluoromethanesulfonamide in the oxidative system (t-BuOCl+Nal) to give trans-2,5-bis(iodomethyl)-1-(trifluoromethylsulfonyl)pyrrolidine 5 and 3,8-bis(trifluoromethylsulfonyl)-3,8-diazabicyclo[3.2.1]octane 6. With arenesulfonamides ArSO2NH2 (Ar=Ph, Tol), the reaction stops at the formation of the trans and cis isomers of 2,5-bis(iodomethyl)-1-(arenesulfonyl)pyrrolidine 7 and 8 (1:1). The cis isomers of 7 and 8 do not undergo cyclization to the corresponding 3,8-disubstituted 3,8-diazabicyclo[3.2.1]octanes. The reaction with triflamide represents the first example of one-pot two-step route to 3,8-diazabicyclo[3.2.1]octane system. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MoskalikAstakhovaSchildeetal.2014, author = {Moskalik, Mikhail Yu. and Astakhova, Vera V. and Schilde, Uwe and Sterkhova, Irina V. and Shainyan, Bagrat A.}, title = {Assembling of 3,6-diazabicyclo[3.1.0]hexane framework in oxidative triflamidation of substituted buta-1,3-dienes}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {45}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.09.050}, pages = {8636 -- 8641}, year = {2014}, language = {en} } @article{SchmidtRiemerSchilde2014, author = {Schmidt, Bernd and Riemer, Martin and Schilde, Uwe}, title = {Chroman-4-ones via microwave-promoted domino claisen rearrangement-oxa-michael addition: Synthesis of tabchromones A and B}, series = {Synlett : accounts and rapid communications in synthetic organic chemistry}, volume = {25}, journal = {Synlett : accounts and rapid communications in synthetic organic chemistry}, number = {20}, publisher = {Thieme}, address = {Stuttgart}, issn = {0936-5214}, doi = {10.1055/s-0034-1379364}, pages = {2943 -- 2946}, year = {2014}, abstract = {Allyl phenyl ethers with a pendant enone substituent undergo, upon microwave irradiation, a domino sequence of Claisen rearrangement and 6-endo-trig-cyclization to furnish functionalized chroman-4-ones. The natural products tabchromones A and B were synthesized via this method.}, language = {en} } @article{WessigMoellnitzKellingetal.2011, author = {Wessig, Pablo and M{\"o}llnitz, Kristian and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of 1r,2c,3c,4t,5t,6t-1,2,3,4,5,6-hexakis-trimethylsilanyloxy-cyclohexane, C24H60O6Si6}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {226}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, number = {2}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {1433-7266}, doi = {10.1524/ncrs.2011.0105}, pages = {228 -- 230}, year = {2011}, abstract = {C24H60O6Si6, triclinic, P (1) over bar (no. 2), a = 11.307(2) angstrom, b = 12.159(2) angstrom, = 16.576(2) angstrom, alpha = 109.47(1)degrees, beta = 94.64(1)degrees, gamma = 111.65(1)degrees, V = 1942.3 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.118, T = 210 K.}, language = {en} } @article{FarraThielWinteretal.2011, author = {Farra, Ramzi and Thiel, Kerstin and Winter, Alette and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II)}, series = {New journal of chemistry}, volume = {35}, journal = {New journal of chemistry}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c1nj20271e}, pages = {2793 -- 2803}, year = {2011}, abstract = {Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science.}, language = {en} } @article{AwadSchildeStrauch2011, author = {Awad, Duha Jawad and Schilde, Uwe and Strauch, Peter}, title = {4,4 '-Bis(tert-butyl)-2,2 '-bipyridinedichlorometal(II) - Synthesis, structure and EPR spectroscopy}, series = {Inorganica chimica acta : the international inorganic chemistry journal}, volume = {365}, journal = {Inorganica chimica acta : the international inorganic chemistry journal}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0020-1693}, doi = {10.1016/j.ica.2010.08.035}, pages = {127 -- 132}, year = {2011}, abstract = {Due to the better solubility of the 4,4'-substituted bipyridine ligand a series of 4,4'0-bis(tert-butyl)-2,2'-bipyridinedichlorometal(II) complexes, [M(tbbpy)Cl(2)], with M = Cu, Ni, Zn, Pd, Pt was synthesised and characterised. The blue copper complex 4,4'-bis(tert-butyl)-2,2'-bipyridinedichlorocopper(II) was isolated in two different polymorphic forms, as prisms 1 with a solvent inclusion and solvent-free as needles 2. Both structures were determined by X-ray structure analysis. They crystallise in the monoclinic space group P2(1)/c with four molecules in the unit cell, but with different unit cells and packing motifs. Whereas in the prisms 1, with the unit cell parameters a = 12.1613(12), b = 10.6363(7), c = 16.3074(15) angstrom, eta = 94.446(8)degrees, the packing is dominated by intra-and intermolecular hydrogen bonds, in the needles 2, with a = 7.738(1), b = 18. 333(2), c = 13.291(3) angstrom, beta = 97.512(15)degrees, only intramolecular hydrogen bonds appear and the complex molecules are arranged in columns which are stabilised by p-p-stacking interactions. In both complexes the copper has a tetrahedrally distorted coordination sphere. These copper complexes were also studied by EPR spectroscopy in solution, as frozen glass and diamagnetically diluted powder with the analogue [Pd(tbbpy)Cl(2)] as host lattice.}, language = {en} } @article{SchmidtStaudeKellingetal.2011, author = {Schmidt, Bernd and Staude, Lucia and Kelling, Alexandra and Schilde, Uwe}, title = {A Cross-Metathesis-Conjugate addition route to enantiopure gamma-Butyrolactams and gamma-Lactones from a C-2-Symmetric Precursor}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {9}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1434-193X}, doi = {10.1002/ejoc.201001528}, pages = {1721 -- 1727}, year = {2011}, abstract = {A protected derivative of (3R, 4R)-hexa-1,5-diene-3,4-diol, a conveniently accessible C-2-symmetric building block, undergoes single or double cross metathesis with methyl acryl-ate. The cross metathesis products are amenable to stereoselective conjugate addition reactions and can be converted into either gamma-butyrolactones or gamma-lactams.}, language = {en} } @article{AdamovichMirskovaMirskovetal.2011, author = {Adamovich, Sergey N. and Mirskova, Anna N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Synthesis and crystal structure of 1,4,10,13-tetraoxa-7,16-diazoniumcyclo-octadecane bis(4-chloro-2-methyl-phenoxyacetate)}, series = {Chemistry central journal}, volume = {5}, journal = {Chemistry central journal}, number = {17}, publisher = {BioMed Central}, address = {London}, issn = {1752-153X}, doi = {10.1186/1752-153X-5-23}, pages = {4}, year = {2011}, abstract = {The title compound was prepared by the reaction of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane with 4-chloro-2-methyl-phenoxyacetic acid in a ratio of 1:2. The structure has been proved by the data of elemental analysis, IR spectroscopy, NMR ((1)H, (13)C) technique and by X-ray diffraction analysis. Intermolecular hydrogen bonds between the azonium protons and oxygen atoms of the carboxylate groups were found. Immunoactive properties of the title compound have been screened. The compound has the ability to suppress spontaneous and Con A-stimulated cell proliferation in vitro and therefore can be considered as immunodepressant.}, language = {en} } @article{SchmidtBergerKellingetal.2011, author = {Schmidt, Bernd and Berger, Ren{\´e} and Kelling, Alexandra and Schilde, Uwe}, title = {Pd-Catalyzed [2+2+1] coupling of alkynes and arenes phenol diazonium salts as mechanistic trapdoors}, series = {Chemistry - a European journal}, volume = {17}, journal = {Chemistry - a European journal}, number = {25}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0947-6539}, doi = {10.1002/chem.201100609}, pages = {7032 -- 7040}, year = {2011}, abstract = {Alkynes and phenol diazonium salts undergo a Pd-catalyzed [2+2+1] cyclization reaction to spiro[4,5]decatetraene-7-ones. This structure was confirmed for one example by X-ray single-crystal structure analysis. The reaction is believed to proceed through oxidative addition of the phenol diazonium cation to Pd(0), subsequent insertion of two alkynes, followed by irreversible spirocyclization.}, language = {en} }