@article{WessigKrebs2021, author = {Wessig, Pablo and Krebs, Saskia}, title = {N-aroylsulfonamide-photofragmentation (ASAP)}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {46}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202100955}, pages = {6367 -- 6374}, year = {2021}, abstract = {The photochemical fragmentation of N-aroylsulfonamides 9 (ASAP) is a powerful method for the preparation of various biaryls. Compounds 9 are easily accessible in two steps from amines by treatment with arenesulfonyl chlorides and aroyl chlorides. Many of these compounds were prepared for the first time. The irradiation takes place in a previously developed continuous-flow reactor using inexpensive UVB or UVC fluorescent lamps. Isocyanates and sulphur dioxide are formed as the only by-products. The ASAP tolerates a variety of functional groups and is even suited for the preparation of phenylnaphthalenes and terphenyls. The ASAP mechanism was elucidated by interaction of photophysical and quantum chemical (DFT) methods and revealed a spirocyclic biradical as key intermediate.}, language = {en} } @article{WolfSanchezYangetal.2019, author = {Wolf, Thomas J. A. and Sanchez, David M. and Yang, J. and Parrish, R. M. and Nunes, J. P. F. and Centurion, M. and Coffee, R. and Cryan, J. P. and G{\"u}hr, Markus and Hegazy, Kareem and Kirrander, Adam and Li, R. K. and Ruddock, J. and Shen, Xiaozhe and Vecchione, T. and Weathersby, S. P. and Weber, Peter M. and Wilkin, K. and Yong, Haiwang and Zheng, Q. and Wang, X. J. and Minitti, Michael P. and Martinez, Todd J.}, title = {The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction}, series = {Nature chemistry}, volume = {11}, journal = {Nature chemistry}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {1755-4330}, doi = {10.1038/s41557-019-0252-7}, pages = {504 -- 509}, year = {2019}, abstract = {The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subangstrom length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.}, language = {en} } @article{WessigPick2011, author = {Wessig, Pablo and Pick, Charlotte}, title = {Photochemical synthesis and properties of axially chiral naphthylpyridines}, series = {Journal of photochemistry and photobiology : A, Chemistry}, volume = {222}, journal = {Journal of photochemistry and photobiology : A, Chemistry}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2011.06.006}, pages = {263 -- 265}, year = {2011}, abstract = {Five alkynyl pyridines were prepared and cyclized to naphthylpyridines as the main products in the course of a Photo-Dehydro-Diels-Alder reaction. Four of the final products are axially chiral and the determination of the rotational barrier by DFT calculations, dynamic NMR and H PLC experiments is demonstrated. (C) 2011 Elsevier B.V. All rights reserved.}, language = {en} } @article{WessigPickSchilde2011, author = {Wessig, Pablo and Pick, Charlotte and Schilde, Uwe}, title = {First example of an atropselective dehydro-Diels-Alder (ADDA) reaction}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.06.024}, pages = {4221 -- 4223}, year = {2011}, abstract = {A new concept of a stereoselective synthesis of axially chiral biaryls, formed in the course of the dehydro-Diels-Alder (DDA) reaction, has been disclosed. It is based on asymmetric induction of the newly formed chirality axis by a chirality center, which is present in the two synthesized DDA reactants. Depending on the different length of the linkers joining the alkyne moieties the DDA reaction may be triggered photochemically or thermally, where only the thermal variant was stereoselective.}, language = {en} }