@article{PereiraNascimentoMagalhaesetal.2014, author = {Pereira, Fernanda S. and Nascimento, Heliara D. L. and Magalhaes, Alvicler and Peter, Martin G. and Bataglion, Giovana Anceski and Eberlin, Marcos N. and Gonzalez, Eduardo R. P.}, title = {ESI(+)-MS and GC-MS study of the hydrolysis of N-azobenzyl derivatives of chitosan}, series = {Molecules}, volume = {19}, journal = {Molecules}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules191117604}, pages = {17604 -- 17618}, year = {2014}, abstract = {New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, H-1-NMR and N-15-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+)-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr) reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan.}, language = {en} } @article{MengibarGananMirallesetal.2011, author = {Mengibar, M. and Ganan, M. and Miralles, B. and Carrascosa, A. V. and Martinez-Rodriguez, Adolfo J. and Peter, Martin G. and Heras, A.}, title = {Antibacterial activity of products of depolymerization of chitosans with lysozyme and chitosanase against Campylobacter jejuni}, series = {Carbohydrate polymers : an international journal devoted to scientific and technological aspects of industrially important polysaccharides}, volume = {84}, journal = {Carbohydrate polymers : an international journal devoted to scientific and technological aspects of industrially important polysaccharides}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0144-8617}, doi = {10.1016/j.carbpol.2010.04.042}, pages = {844 -- 848}, year = {2011}, abstract = {Chitosan has several biological properties useful for the food industry, but the most attractive is its potential use as a food preservative of natural origin due to its antimicrobial activity against a wide range of food-borne microorganisms. Among food-borne pathogens, Campylobacter jejuni and related species are recognised as the most common causes of bacterial food-borne diarrhoeal disease throughout the world. Recently, it has been demonstrated that campylobacters are highly sensitive to chitosan. Even though chitosan is known to have important functional activities, poor solubility makes them difficult to use in food and biomedical applications. Unlike chitosan, the low viscosity and good solubility of chitosan oligosaccharides (COS) make them especially attractive in an important number of useful applications. In the present work, the effect of different COS on C. jejuni was investigated. Variables such as the physicochemical characteristics of chitosan and the enzyme used in COS preparation were studied. The COS had been fractioned using ultrafiltration membranes and each fraction was characterized regarding its FA and molecular weight distribution. It has been demonstrated that the biological properties of COS on Campylobacter depend on the composition of the fraction analysed. COS prepared by enzymatic hydrolysis with chitosanase were more active against Campylobacter that lysozyme-derived COS, and this behaviour seems to be related with the acetylation of the chains. On the other hand. the 10-30 kDa fraction was the most active COS fraction, independently of the enzyme used for the hydrolysis. These results have shown that COS could be useful as antimicrobial in the control of C. jejuni.}, language = {en} } @article{VijayakrishnanIssareeCoriloetal.2011, author = {Vijayakrishnan, Balakumar and Issaree, Arisara and Corilo, Yuri E. and Ferreira, Christina Ramires and Eberlin, Marcos N. and Peter, Martin G.}, title = {MSn of the six isomers of (GlcN)(2)(GlcNAc)(2) aminoglucan tetrasaccharides (diacetylchitotetraoses) rules of fragmentation for the sodiated molecules and application to sequence analysis of hetero-chitooligosaccharides}, series = {Carbohydrate polymers : an international journal devoted to scientific and technological aspects of industrially important polysaccharides}, volume = {84}, journal = {Carbohydrate polymers : an international journal devoted to scientific and technological aspects of industrially important polysaccharides}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0144-8617}, doi = {10.1016/j.carbpol.2010.04.041}, pages = {713 -- 726}, year = {2011}, abstract = {The six possible isomers of di-N-acetylchitotetraoses [AADD, ADDA, ADAD, DADA, DAAD, and DDAA, where D stands for 2-amino-2-deoxy-3-D-glucose (GlcN) and A for 2-acetamido-2-deoxy-beta-D-glucose (GlcNAc)] were analyzed by ESI(+)-MSn. Collision induced dissociation via MSn experiments were performed for the sodiated molecules of m/z 769 [M+Na](+) for each isomer, and fragments were generated mainly by glycosidic bond and cross-ring cleavages. Rules of fragmentation were then established. A reducing end D residue yields the (O.2)A(4) cross-ring [M-59+Na](+) fragment of m/z 710 as the most abundant, whereas isomers containing a reducing end A prefer to lose water to form the [M-18+Na](+) ion of m/z 751, as well as abundant (O.2)A(4) cross-ring [M-101+Na](+) fragments of m/z 668 and B-3 [M-221+Na](+) ions of m/z 548. MS3 of C- and Y-type ions shows analogous fragmentation behaviour that allows identification of the reducing end next-neighbour residue. Due to gas-phase anchimeric assistance, B-type cleavage between the glycosidic oxygen and the anomeric carbon atom is favoured when the glycon is an A residue. Relative ion abundances are generally in the order B >> C > Y, but may vary depending on the next neighbour towards the non-reducing end. These fragmentation rules were used for partial sequence analysis of hetero-chitooligosaccharides of the composition D(2)A(3), D(3)A(3), D(2)A(4), D(4)A(3), and D(3)A(4).}, language = {en} } @article{JumaAkalaEyaseetal.2011, author = {Juma, Wanyama P. and Akala, Hoseah M. and Eyase, Fredrick L. and Muiva, Lois M. and Heydenreich, Matthias and Okalebo, Faith A. and Gitu, Peter M. and Peter, Martin G. and Walsh, Douglas S. and Imbuga, Mabel and Yenesew, Abiy}, title = {Terpurinflavone an antiplasmodial flavone from the stem of Tephrosia Purpurea}, series = {Phytochemistry letters}, volume = {4}, journal = {Phytochemistry letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2011.02.010}, pages = {176 -- 178}, year = {2011}, abstract = {The stem extract of Tephrosia purpurea showed antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) strains of Plasmodium falciparum with IC(50) values of 10.47 +/- 2.22 mu g/ml and 12.06 +/- 2.54 mu g/ml, respectively. A new prenylated flavone, named terpurinflavone, along with the known compounds lanceolatin A, (-)-semiglabrin and lanceolatin B have been isolated from this extract. The new compound, terpurinflavone, showed the highest antiplasmodial activity with IC(50) values of 3.12 +/- 0.28 mu M (D6) and 6.26 +/- 2.66 mu M (W2). The structures were determined on the basis of spectroscopic evidence.}, language = {en} } @article{PazPeterSchmidtetal.2012, author = {Paz, Cristian and Peter, Martin G. and Schmidt, Bernd and Becerra, Jose and Gutierrez, Margarita and Astudillo, Luis and Silva, Mario}, title = {Synthesis and AChE inhibiting activity of 2, 4 substituted 6-Phenyl Pyrimidines}, series = {Journal of the Chilean Chemical Society}, volume = {57}, journal = {Journal of the Chilean Chemical Society}, number = {3}, publisher = {Sociedad Chilena De Quimica}, address = {Concepcion}, issn = {0717-9324}, pages = {1292 -- 1294}, year = {2012}, abstract = {Novel substituted pyrimidines were synthesized from methyl 2,4-dioxo-4-phenyl-butanoate (I-A) and urea, followed by Mitsunobu coupling of I-A with benzyl or allyl alcohol to give the corresponding 2-hydroxypyrimidine ethers in good yields. Saponification of I-A, followed by reaction with benzyl or allyl amines in the presence of TBTU yielded 2-hydroxy-6-phenyl-pyrimidine 4-carboxamides. AChE and BuChE assays revealed 2-hydroxy-6-phenyl-pyrimidine-4-carboxyallyamide as the most active compound, IC50=90 mu M, with no inhibition of BuChE.}, language = {en} } @article{FasciottiSanvidoSantosetal.2012, author = {Fasciotti, Maira and Sanvido, Gustavo B. and Santos, Vanessa G. and Lalli, Priscila M. and McCullagh, Michael and de Sa, Gilberto F. and Daroda, Romeu J. and Peter, Martin G. and Eberlin, Marcos N.}, title = {Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas}, series = {Journal of mass spectrometr}, volume = {47}, journal = {Journal of mass spectrometr}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.3089}, pages = {1643 -- 1647}, year = {2012}, abstract = {The use of CO2 as a massive and polarizable drift gas is shown to greatly improve peak-to-peak resolution (Rp-p), as compared with N2, for the separation of disaccharides in a Synapt G2 traveling wave ion mobility cell. Near or baseline Rp-p was achieved for three pairs of sodiated molecules of disaccharide isomers, that is, cellobiose and sucrose (Rp-p?=?0.76), maltose and sucrose (Rp-p?=?1.04), and maltose and lactose (Rp-p?=?0.74). Ion mobility mass spectrometry using CO2 as the drift gas offers therefore an attractive alternative for fast and efficient separation of isomeric disaccharides.}, language = {en} } @article{AndayiYenesewDereseetal.2006, author = {Andayi, Andrew W. and Yenesew, Abiy and Derese, Solomon and Midiwo, Jacob O. and Gitu, Peter M. and Jondiko, Ogoche J. I. and Akala, Hoseah M. and Liyala, Pamela and Wangui, Julia and Waters, Norman C. and Heydenreich, Matthias and Peter, Martin G.}, title = {Antiplasmodial flavonoids from Erythrina sacleuxii}, issn = {0032-0943}, doi = {10.1055/s-2005-873200}, year = {2006}, abstract = {The acetone extracts of the root bark and stem bark of Erythrina sacleuxii showed antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the acetone extract of the root bark afforded a new isoflavone, 7-hydroxy-4 -methoxy-3'- prenylisoflavone (trivial name 5-deoxy-3' - prenylbiochanin A) along with known isoflavonoids as the antiplasmodial principles. Flavonoids and isoflavonoids isolated from the stem bark of E. sucleuxii were also tested and showed antiplasmodial activities. The structures were determined on the basis of spectroscopic evidence}, language = {en} } @article{HaebelBahrkePeter2007, author = {Haebel, Sophie and Bahrke, Sven and Peter, Martin G.}, title = {Quantitative sequencing of complex mixtures of heterochitooligosaccharides by vMALDI-linear ion trap mass spectrometry}, issn = {0003-2700}, doi = {10.1021/Ac062254u}, year = {2007}, abstract = {Heterochitooligosaccharides possess interesting biol. properties. Isobaric mixts. of such linear heterochitooligosaccharides can be obtained by chem. or enzymic degrdn. of chitosan. However, the sepn. of such mixts. is a challenging anal. problem which is so far unresolved. It is shown that these isobaric mixts. can be sequenced and quantified simultaneously using std. derivatization and multistage tandem mass spectrometric techniques. A linear ion trap mass spectrometer equipped with a vacuum matrix-assisted laser desorption ionization (vMALDI) source is used to perform MS2 as well as MS3 expts. [on SciFinder (R)].}, language = {en} } @article{NorledgeLambeirAbagyanetal.2001, author = {Norledge, Brian V. and Lambeir, Anne M. and Abagyan, Ruben and Rottmann, Antje and Fernendez, Anna M. and Filimonov, Vladimir V. and Peter, Martin G. and Wierenga, Rik K.}, title = {Modeling, mutagenesis, and structural studies on the fully conserved phoshate-binding loop (Loop 8) of triosephosphate isomerase : toward a new substrate specificity}, issn = {0887-2585}, year = {2001}, language = {en} } @article{TsukamotoHaebelValencaetal.2008, author = {Tsukamoto, Junko and Haebel, Sophie and Valenca, Gustavo P. and Peter, Martin G. and FRanco, Telma T.}, title = {Enzymatic direct synthesis of acrylic acid esters of mono- and disaccharides}, issn = {0268-2575}, year = {2008}, abstract = {Background: There is an increased need to replace materials derived from fossil sources by renewables. Sugar- cane derived carbohydrates are very abundant in Brazil and are the cheapest sugars available in the market, with more than 400 million tons of sugarcane processed in the year 2007. The objective of this work was to study the prepn. of sugar acrylates from free sugars and free acrylic acid, thus avoiding the previous prepn. of protected sugar derivs., such as glycosides, or activated acrylates, such as vinyl acrylate. Results: Lipase catalyzed esterification of three mono- and two disaccharides with acrylic acid, in the presence or absence of mol. sieves was investigated. The reactions were monitored by high-performance liq. chromatog. (HPLC) and the products were analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The main products are mono- and diacrylates, while higher esters are formed as minor products. The highest conversion to sugar acrylates was obsd. for the D-glucose and D- fructose, followed by D-xylose and D-maltose. Mol. sieves had no pronounced effect on the conversion. Conclusions: A feasible method is described to produce and to characterize sugar acrylates, including those contg. more than two acrylate groups. The process for prodn. of these higher esters could potentially be optimized further to produce mols. for crosslinking in acrylate polymn. and other applications. The direct enzymic esterification of free carbohydrates with acrylic acid is unprecedented. [on SciFinder (R)].}, language = {en} } @article{LopezFrancoCalderondelaBarcaValdezetal.2008, author = {L{\´o}pez-Franco, Yolanda L. and Calder{\´o}n de la Barca, Ana M. and Valdez, Miguel A. and Peter, Martin G. and Rinaudo, Marguerite and Chambat, G{\´e}rard and Goycoolea, Francisco M.}, title = {Structural characterization of mesquite (Prosopis velutina) gum and its fractions}, issn = {1616-5187}, doi = {10.1002/mabi.200700285}, year = {2008}, abstract = {Structural and physicochem. characteristics of mesquite gum (from Prosopis velutina) were investigated using FT- IR spectroscopic, mass spectrometric and chromatog. methods. Four fractions (F-I, F-IIa, F-IIb and F-III) were isolated by hydrophobic interaction chromatog. The samples were characterized and analyzed for their monosaccharide and oligomers compn. by high performance anion-exchange chromatog. with pulsed amperometric detection (HPAEC-PAD). L-Arabinose (L-Ara) and D-galactose (D-Gal) were found as the main carbohydrate constituent residues in the polysaccharides from mesquite gum and their ratio (L-Ara/D-Gal) varied within the range 2.54 to 3.06 among the various fractions. Small amts. of D- glucose (D-Glc), D-mannose (D-Man) and D-xylose (D-Xyl) were also detected, particularly in Fractions IIa, IIb and III. IR spectroscopy identified polysaccharides and protein in all the samples. Data from mass spectrometry (MALDI-TOF MS) was consistent with the idea that the structure corresponding to the periphereal chains of Fraction I is predominantly a chain of pentoses attached to uronic acid. [on SciFinder (R)].}, language = {en} } @article{YenesewTwinomuhweziKiremireetal.2009, author = {Yenesew, Abiy and Twinomuhwezi, Hannington and Kiremire, Bernard T. and Mbugua, Martin N. and Gitu, Peter M. and Heydenreich, Matthias and Peter, Martin G.}, title = {8-Methoxyneorautenol and radical scavenging flavonoids from Erythrina abyssinica}, issn = {1011-3924}, year = {2009}, abstract = {A new pterocarpan (named 8-methoxyneorautenol) was isolated from the acetone ext. of the root bark of Erythrina abyssinica. In addn., the known isoflavonoid derivs. eryvarin L, erycristagallin and shinpterocarpin were identified for the first time from the roots of this plant. The structures were detd. on the basis of spectroscopic evidence. The new compd. showed selective antimicrobial activity against Trichophyton mentagrophytes. The acetone ext. of the root bark of E. abyssinica showed radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The pterocarpenes, 3-hydroxy-9-methoxy-10-(3,3-dimethylallyl)pterocarpene and erycristagallin, were the most active constituents of the roots of this plant and showing dose-dependent activities similar to that of the std. quercetin. [on SciFinder (R)]}, language = {en} } @article{FettkePeikowPeteretal.2009, author = {Fettke, Anja and Peikow, Dirk and Peter, Martin G. and Kleinpeter, Erich}, title = {Synthesis and conformational analysis of glycomimetic analogs of thiochitobiose}, issn = {0040-4020}, doi = {10.1016/j.tet.2009.03.067}, year = {2009}, abstract = {The synthesis of six analogs of N,N;-diacetylchitobiose is reported, including a novel transglycosylation reaction for the preparation of S-aryl thioglycosides. The conformations of the compounds were studied by a combination of NMR spectroscopy and molecular modeling, using force field calculations. In the case of the S-aryl thioglycosides with exclusively S-glycosidic linkages, dihedral angles of the disaccharidic S-glycosidic bonds, ;; and ;; and of the S-arylglycoside bonds, ; and ;, were found to be similar, whereas they were different in mixed glycosides and in a thiazoline derivative. An adequate correlation between the calculated H,H-distances of the local minima and the measured NOE contacts was achieved by applying population-weighted averages over participating conformers based on weighted relative energies.}, language = {en} } @article{MenezesGrigolonTodorovicetal.2009, author = {Menezes, Bruno M. and Grigolon, Lisanne and Todorovic, Zoran and Peter, Martin G. and Franco, Telma T.}, title = {On the depolymerization of chitosan by papain : a re-assessment}, year = {2009}, language = {en} } @article{OliveiraelGueddariMoerschbacheretal.2008, author = {Oliveira, Enio N. and el Gueddari, Nour E. and Moerschbacher, Bruno M. and Peter, Martin G. and Franco, Telma T.}, title = {Growth of phytopathogenic fungi in the presence of partially acetylated chitooligosaccharides}, issn = {0301-486X}, year = {2008}, abstract = {Four phytopathogenic fungi were cultivated up to six days in media contg. chitooligosaccharide mixts. differing in av. DP and F A. The three different mixts. were named Q3 (which contained oligosaccharides of DP2-DP10, with DP2-DP7 as main components), Q2 (which contained oligosaccharides of DP2-DP12, with DP2-DP10 as main components) and Q1 (which derived from Q2 and contained oligomers of DP5-DP8 with hexamer and a heptamer as the main components). The novel aspect of this work is the description of the effect of mixts. of oligosaccharides with different and known compn. on fungal growth rates. The growth rate of Alternaria alternata and Rhizopus stolonifer was initially inhibited by Q3 and Q2 at higher concns. Q1 had a growth stimulating effect on these two fungi. Growth of Botrytis cinerea was inhibited by Q3 and Q2, while Q1 had no effect on the growth of this fungus. Growth of Penicillium expansum was only slightly inhibited by higher concns. of sample Q3, while Q2 and Q1 had no effect. The inhibition of growth rates or their resistance toward chitooligosaccharides correlated with the absence or presence of chitinolytic enzymes in the culture media, resp. [on SciFinder (R)]}, language = {en} } @article{BringmannMutanyattaComarMaksimenkaetal.2008, author = {Bringmann, Gerhard and Mutanyatta-Comar, Joan and Maksimenka, Katja and Wanjohi, John M. and Heydenreich, Matthias and Brun, Reto and M{\"u}ller, Werner E. G. and Peter, Martin G. and Midiwo, Jacob O. and Yenesew, Abiy}, title = {Joziknipholones A and B : the first dimeric phenylanthraquinones, from the roots of Bulbine frutescens}, issn = {0947-6539}, year = {2008}, abstract = {From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P- configuration (i.e., with the acetyl portions below the anthraquinone plane) at both axes in the case of joziknipholone A, whereas in joziknipholone B, the knipholone part was found to be M-configured. Joziknipholones A and B are active against the chloroquine resistant strain K1 of the malaria pathogen, Plasmodium falciparum, and show moderate activity against murine leukemic lymphoma L5178y cells.}, language = {en} } @article{RukungaMuregiOmaretal.2008, author = {Rukunga, G. M. and Muregi, F. W. and Omar, S. A. and Gathirwa, J. W. and Muthaura, C. N. and Peter, Martin G.}, title = {Anti-plasmodial activity of the extracts and two sesquiterpenes from Cyperus articulatus}, issn = {0367-326X}, year = {2008}, abstract = {Two sesquiterpenes, corymbolone and mustakone, isolated from the chloroform extract of the rhizomes of Cyperus articulatus, exhibited significant anti-plasmodial properties. Mustakone was approximately ten times more active than corymbolone against the sensitive strains of the Plasmodium falciparum.}, language = {en} } @article{IssareeVijayakrishnanAbdelnuretal.2009, author = {Issaree, Arisara and Vijayakrishnan, Balakumar and Abdelnur, Patricia V. and Corilo, Yuri E. and Riccio, Maria F. and Sanvido, Gustavo B. and Eberlin, Marcos N. and Peter, Martin G.}, title = {Mass spectrometry of aminoglucan oligosaccharides using electrospray ionization MS/MS and MS/MS/MS}, year = {2009}, language = {en} } @article{PeterLeyPetersenetal.1994, author = {Peter, Martin G. and Ley, J. P. and Petersen, Stefan and Londershausen, M. and Schumacher-Wandersleb, Michael H. M. G. and Spindler, Klaus-Dieter and Spindler-Barth, Margarethe and Turberg, Andreas}, title = {Synthesis of chitinase inhibitors}, year = {1994}, language = {en} } @article{KroescheCrescenziHoffbaueretal.1994, author = {Kr{\"o}sche, Christian and Crescenzi, Orlando and Hoffbauer, Wilfried and Jansen, Martin and Napolitano, Alessandra and Prota, Guiseppe and Peter, Martin G.}, title = {Synthesis of dopamines labelled with 13C in the alpha- or beta-side chain positions, and their application for structure studies on melanins by solid state NMR spectroscopy}, year = {1994}, language = {en} } @article{SchumacherWanderslebPetersenPeter1994, author = {Schumacher-Wandersleb, Michael H. M. G. and Petersen, Stefan and Peter, Martin G.}, title = {Preparation of the N-Acetylglucosaminidase inhibitor 1-Acetamido-1,2,5-tride oxy-2,5-imino-D-glucitol from methyl a-D-Mannopyranoside}, year = {1994}, language = {en} } @article{PeterAndersen1994, author = {Peter, Martin G. and Andersen, S. O.}, title = {The molecular architecture of the insect exoskeleton}, year = {1994}, language = {en} } @article{LeyPeter1994, author = {Ley, J. P. and Peter, Martin G.}, title = {Synthesis of N-(2-Acetamido-2-deoxy-ß-D-glucopyranosyl)- and of N-(N,N-Diacetylchitobiosyl)-amide of lhistidine}, issn = {0039-7881}, year = {1994}, language = {en} } @article{SchumacherWanderslebPeter1995, author = {Schumacher-Wandersleb, Michael H. M. G. and Peter, Martin G.}, title = {Synthesis of chitobiosyl pyrrolidines}, year = {1995}, language = {en} } @article{PeterMerz1995, author = {Peter, Martin G. and Merz, A.}, title = {Stereoselective benzylic deprotonation in the enzymatic rearrangement of N-acetyldopamine derived o-Quinone to the p-Quinone methide}, issn = {0957-4166}, year = {1995}, language = {en} } @article{Peter1995, author = {Peter, Martin G.}, title = {Chitin in den Startl{\"o}chern}, issn = {0009-2959}, year = {1995}, language = {de} } @article{Peter1995, author = {Peter, Martin G.}, title = {Chemistry and biochemistry of the insect exoskeleton}, year = {1995}, language = {en} } @article{Peter1995, author = {Peter, Martin G.}, title = {Chemie i Biochemia Zewnetrznego Szkieletu Owadow : (Chemistry and biochemistry of the insect exoskeleton)}, year = {1995}, language = {en} } @article{Peter1995, author = {Peter, Martin G.}, title = {The Bio-organic chemistry of melanogenesis}, year = {1995}, language = {en} } @article{AbegazPeter1995, author = {Abegaz, Berhanu M. and Peter, Martin G.}, title = {Emodine and emodinanthrone rhamnoside acetates from fruits of rhamnus prinoides}, issn = {0031-9422}, year = {1995}, language = {en} } @article{Peter1995, author = {Peter, Martin G.}, title = {Applications and environmental aspects of chitin and chitosan}, issn = {0022-233X}, year = {1995}, language = {en} } @article{BussVarumPeteretal.1996, author = {Buss, U. and Varum, K. M. and Peter, Martin G. and Spindler-Barth, Margarethe}, title = {ELISA for quantitation of chitin, chitosan and related compounds}, year = {1996}, language = {en} } @article{LeyPeter1996, author = {Ley, J. P. and Peter, Martin G.}, title = {Synthesis of L-histidine and (-)-spinacine chitooligosyl amides}, year = {1996}, language = {en} } @article{KroeschePeter1996, author = {Kr{\"o}sche, Ch. and Peter, Martin G.}, title = {Detection of melanochromes by MALDI-TOF mass spectrometry}, year = {1996}, language = {en} } @article{AndersenPeterRoepstorff1996, author = {Andersen, S. O. and Peter, Martin G. and Roepstorff, Peter}, title = {Cuticular sclerotization in insects}, year = {1996}, language = {en} } @article{LondershausenTurbergSpindlerBarthetal.1996, author = {Londershausen, M. and Turberg, Andreas and Spindler-Barth, Margarethe and Peter, Martin G.}, title = {Screening Test for Insecticides Interfering with Cuticular Sclerotization}, year = {1996}, language = {en} } @article{LondershausenTurbergBieseleretal.1996, author = {Londershausen, M. and Turberg, Andreas and Bieseler, Barbara and Lennarz, M. and Peter, Martin G.}, title = {Characterization and Inhibitor Studies of Chitinases from Parasitic Blowfly (Lucilia cuprina), Tick (Boophilus micoplus), Intestinale Nematode (Haemonchus contortus), and a Bean (Phaseolus vulgaris)}, year = {1996}, language = {en} } @article{PeterMiessner1997, author = {Peter, Martin G. and Miessner, Merle}, title = {Prim{\"a}rstoffwechsel, Shikimat- und Phenylpropan-Gruppe, Vitamine, Coenzyme, Pflanzeninhaltsstoffe}, year = {1997}, language = {de} } @article{SchanzenbachPeter1997, author = {Schanzenbach, Dirk and Peter, Martin G.}, title = {Chromatography of chito-oligosaccarides}, year = {1997}, language = {en} } @article{LeySchweikartPeter1997, author = {Ley, J. P. and Schweikart, F. and Peter, Martin G.}, title = {Chitinase inhibitors}, year = {1997}, language = {en} } @article{SchanzenbachMaternPeter1997, author = {Schanzenbach, Dirk and Matern, Christa-Maria and Peter, Martin G.}, title = {Synthesis of glycosylamines and glycopeptides}, year = {1997}, language = {en} } @article{SchanzenbachPeter1997, author = {Schanzenbach, Dirk and Peter, Martin G.}, title = {NMR spectroscopy of chito-oligosaccharides}, year = {1997}, language = {en} } @article{SchanzenbachMaternPeter1997, author = {Schanzenbach, Dirk and Matern, Christa-Maria and Peter, Martin G.}, title = {Cleavage of chitin by means of sulfurice acid/acetc anhydride and isolation of peracetylated chito- oligosaccharides}, year = {1997}, language = {en} } @article{RatajskaStruszczykBoryniecetal.1997, author = {Ratajska, M. and Struszczyk, Marcin Henryk and Boryniec, Stefan and Peter, Martin G. and Loth, Fritz}, title = {The degree of acetylation of chitosan : optimization of the IR Method}, year = {1997}, language = {en} } @article{PeterWollenberger1997, author = {Peter, Martin G. and Wollenberger, Ursula}, title = {Phenol-oxidizing enzymes : mechanisms and applications}, year = {1997}, language = {en} } @article{HaebelPeterKatalinicPeter1997, author = {Haebel, Sophie and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Mass spectrometry of chitooligosaccharides}, isbn = {88-86889- 01-1}, year = {1997}, language = {en} } @article{StruszczykRatajskaBoryniecetal.1997, author = {Struszczyk, Marcin Henryk and Ratajska, M. and Boryniec, Stefan and Peter, Martin G. and Loth, Fritz}, title = {The determination of the degree of N-acetylation of chitosan}, year = {1997}, language = {en} } @article{StruszczykLothPeter1998, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Peter, Martin G.}, title = {Analysis of deacetylation deree in chitosans from various sources}, year = {1998}, language = {en} } @article{StruszczykLothKoehleretal.1998, author = {Struszczyk, Marcin Henryk and Loth, Fritz and K{\"o}hler, L. A. and Peter, Martin G.}, title = {Characterization of chitosan}, year = {1998}, language = {en} } @article{BerthDautzenbergPeter1998, author = {Berth, Gisela and Dautzenberg, Herbert and Peter, Martin G.}, title = {Physico-chemical characterization of chitosans varying in degree of acetylation}, issn = {0144-8617}, year = {1998}, language = {en} }