@article{VillatoroZuehlkeRiebeetal.2016, author = {Villatoro, Jos{\´e} Andr{\´e}s and Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and Weber, Marcus and Riedel, Jens and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {IR-MALDI ion mobility spectrometry: physical source characterization and application as HPLC detector}, series = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, volume = {19}, journal = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, publisher = {Springer}, address = {Heidelberg}, issn = {1435-6163}, doi = {10.1007/s12127-016-0208-1}, pages = {197 -- 207}, year = {2016}, abstract = {Infrared matrix-assisted laser dispersion and ionization (IR-MALDI) in combination with ion mobility (IM) spectrometry enables the direct analysis of biomolecules in aqueous solution. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse, which disperses the liquid as vapor, nano-and micro-droplets. The ionization process is characterized initially by a broad spatial distribution of the ions, which is a result of complex fluid dynamics and desolvation kinetics. These processes have a profound effect on the shape and width of the peaks in the IM spectra. In this work, the transport of ions by the phase explosion-induced shockwave could be studied independently from the transport by the electric field. The shockwave-induced mean velocities of the ions at different time scales were determined through IM spectrometry and shadowgraphy. The results show a deceleration of the ions from 118 m.s(-1) at a distance of 400 mu m from the liquid surface to 7.1 m.s(-1) at a distance of 10 mm, which is caused by a pile-up effect. Furthermore, the desolvation kinetics were investigated and a first-order desolvation constant of 325 +/- 50 s(-1) was obtained. In the second part, the IR-MALDI-IM spectrometer is used as an HPLC detector for the two-dimensional separation of a pesticide mixture.}, language = {en} }