@inproceedings{BenderFabianLessmannetal.2016, author = {Bender, Benedict and Fabian, Benjamin and Lessmann, Stefan and Haupt, Johannes}, title = {E-Mail Tracking}, series = {Proceedings of the 37th International Conference on Information Systems (ICIS)}, booktitle = {Proceedings of the 37th International Conference on Information Systems (ICIS)}, pages = {19}, year = {2016}, abstract = {E-mail advertisement, as one instrument in the marketing mix, allows companies to collect fine-grained behavioural data about individual users' e-mail reading habits realised through sophisticated tracking mechanisms. Such tracking can be harmful for user privacy and security. This problem is especially severe since e-mail tracking techniques gather data without user consent. Striving to increase privacy and security in e-mail communication, the paper makes three contributions. First, a large database of newsletter e-mails is developed. This data facilitates investigating the prevalence of e- mail tracking among 300 global enterprises from Germany, the United Kingdom and the United States. Second, countermeasures are developed for automatically identifying and blocking e-mail tracking mechanisms without impeding the user experience. The approach consists of identifying important tracking descriptors and creating a neural network-based detection model. Last, the effectiveness of the proposed approach is established by means of empirical experimentation. The results suggest a classification accuracy of 99.99\%.}, language = {en} } @article{JunghannsFabianErmakova2016, author = {Junghanns, Philipp and Fabian, Benjamin and Ermakova, Tatiana}, title = {Engineering of secure multi-cloud storage}, series = {Computers in industry : an international, application oriented research journal}, volume = {83}, journal = {Computers in industry : an international, application oriented research journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0166-3615}, doi = {10.1016/j.compind.2016.09.001}, pages = {108 -- 120}, year = {2016}, abstract = {This article addresses security and privacy issues associated with storing data in public cloud services. It presents an architecture based on a novel secure cloud gateway that allows client systems to store sensitive data in a semi-trusted multi-cloud environment while providing confidentiality, integrity, and availability of data. This proxy system implements a space-efficient, computationally-secure threshold secret sharing scheme to store shares of a secret in several distinct cloud datastores. Moreover, the system integrates a comprehensive set of security measures and cryptographic protocols to mitigate threats induced by cloud computing. Performance in practice and code quality of the implementation are analyzed in extensive experiments and measurements. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{ErmakovaFabianZarnekow2016, author = {Ermakova, Tatiana and Fabian, Benjamin and Zarnekow, Ruediger}, title = {Improving Individual Acceptance of Health Clouds through Confidentiality Assurance}, series = {Applied clinical informatics}, volume = {7}, journal = {Applied clinical informatics}, publisher = {Schattauer}, address = {Stuttgart}, issn = {1869-0327}, doi = {10.4338/ACI-2016-07-RA-0107}, pages = {983 -- 993}, year = {2016}, abstract = {Background: Cloud computing promises to essentially improve healthcare delivery performance. However, shifting sensitive medical records to third-party cloud providers could create an adoption hurdle because of security and privacy concerns. Methods: We empirically investigate our research question by a survey with over 260 full responses. For the setting with a high confidentiality assurance, we base on a recent multi-cloud architecture which provides very high confidentiality assurance through a secret-sharing mechanism: Health information is cryptographically encoded and distributed in a way that no single and no small group of cloud providers is able to decode it.}, language = {en} }