@article{HocherSharkovskaMarketal.2013, author = {Hocher, Berthold and Sharkovska, Yuliya and Mark, Michael and Klein, Thomas and Pfab, Thiemo}, title = {The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats}, series = {International journal of cardiology}, volume = {167}, journal = {International journal of cardiology}, number = {1}, publisher = {Elsevier}, address = {Clare}, issn = {0167-5273}, doi = {10.1016/j.ijcard.2011.12.007}, pages = {87 -- 93}, year = {2013}, abstract = {Background: Dipeptidylpeptidase-4 inhibition is reported to have beneficial effects on myocardial ischemia. Mechanisms might include a reduced degradation of stromal cell-derived factor-1 alpha with subsequent increased recruitment of circulating stem cells and/or incretin receptor-dependent pathways. This study evaluated the novel xanthine-based dipeptidylpeptidase-4 inhibitors linagliptin (BI 1356) and BI 14361 in cardiac ischemia. Methods: Male Wistar rats were pretreated with linagliptin or BI 14361 and subjected to ligation of the left anterior descending coronary artery for 30 min. Results: Dipeptidylpeptidase-4 inhibition significantly reduced the infarct size after 7 days (-27.7\%, p<0.05) and 8 weeks (-18.0\%, p<0.05). There was a significantly improved maximum rate of left ventricular pressure decline (dP/dt min) in linagliptin-treated animals 8 weeks after ischemia/reperfusion. Apart from that, treatment did not improve cardiac function as determined by echocardiography and cardiac catheterization. Immunohistological staining revealed an increased number of cells positive for stromal cell-derived factor-1 alpha, CXCR-4 and CD34 within and around the infarcted area of BI 14361-treated animals. Conclusions: Linagliptin and BI 14361 are able to reduce infarct size after myocardial ischemia. The immunohistological findings support the hypothesis that dipeptidylpeptidase-4 inhibition via reduced cleavage of stromal cell-derived factor-1 alpha might lead to an enhanced recruitment of CXCR-4+ circulating progenitor cells.}, language = {en} } @article{VickersCheethamBirminghametal.2012, author = {Vickers, Steven P. and Cheetham, Sharon C. and Birmingham, Gareth D. and Rowley, Helen L. and Headland, Katie R. and Dickinson, Keith and Grempler, Rolf and Hocher, Berthold and Mark, Michael and Klein, Thomas}, title = {Effects of the DPP-4 Inhibitor, Linagliptin, in Diet-Induced obese rats a comparison in Naive and Exenatide-Treated Animals}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {7-8}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2011.110919}, pages = {787 -- 799}, year = {2012}, abstract = {Background: To assess the chronic effect of the DPP-4 inhibitor, linagliptin, alone, in combination with exenatide, and during exenatide withdrawal, in diet-induced obese (DIO) rats. Methods: Female Wistar rats were exposed to a cafeteria diet to induce obesity. Animals were then dosed with vehicle or linagliptin (3 mg/kg PO) orally once-daily for a 28 day period. In a subsequent study, rats received exenatide (either 3 or 30 mu g/kg/day) or vehicle by osmotic mini-pump for 28 days. In addition, groups of animals were dosed orally with linagliptin either alone or in combination with a 3 mu g/kg/day exenatide dose for the study duration. In a final study, rats were administered exenatide (30 mu g/kg/day) or vehicle by osmotic mini-pump for eleven days. Subsequently, exenatide-treated animals were transferred to vehicle or continued exenatide infusion for a further ten days. Animals transferred from exenatide to vehicle were also dosed orally with either vehicle or linagliptin. In all studies, body weight, food and water intake were recorded daily and relevant plasma parameters and carcass composition were determined. Results: In contrast to exenatide, linagliptin did not significantly reduce body weight or carcass fat in DIO rats versus controls. Linagliptin augmented the effect of exenatide to reduce body fat when given in combination but did not affect the body weight response. In rats withdrawn from exenatide, weight regain was observed such that body weight was not significantly different to controls. Linagliptin reduced weight regain after withdrawal of exenatide such that a significant difference from controls was evident. Conclusions: These data demonstrate that linagliptin does not significantly alter body weight in either untreated or exenatide-treated DIO rats, although it delays weight gain after exenatide withdrawal. This finding may suggest the utility of DPP-4 inhibitors in reducing body weight during periods of weight gain.}, language = {en} }