@misc{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-51499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514995}, pages = {13}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Molecular Nutrition and Food Research}, volume = {65}, journal = {Molecular Nutrition and Food Research}, number = {8}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1613-4133}, doi = {10.1002/mnfr.202001176}, pages = {1 -- 11}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{PeresHorningBornhorstetal.2019, author = {Peres, Tanara V. and Horning, Kyle J. and Bornhorst, Julia and Schwerdtle, Tanja and Bowman, Aaron B. and Aschner, Michael}, title = {Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo}, series = {Biological Trace Element Research}, volume = {188}, journal = {Biological Trace Element Research}, number = {1}, publisher = {Human press inc.}, address = {Totowa}, issn = {0163-4984}, doi = {10.1007/s12011-018-1531-7}, pages = {127 -- 134}, year = {2019}, abstract = {Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity.}, language = {en} } @article{RuszkiewiczdeMacedoMirandaVizueteetal.2018, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Teixeira da Rocha, Joao B. and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {68}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2018.08.007}, pages = {189 -- 202}, year = {2018}, abstract = {Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.}, language = {en} }