@misc{GianelliDallaVolta2015, author = {Gianelli, Claudia and Dalla Volta, Riccardo}, title = {Does listening to action-related sentences modulate the activity of the motor system?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75173}, year = {2015}, abstract = {The neurophysiological and behavioral correlates of action-related language processing have been debated for long time. A precursor in this field was the study by Buccino et al. (2005) combining transcranial magnetic stimulation (TMS) and behavioral measures (reaction times, RTs) to study the effect of listening to hand- and foot-related sentences. In the TMS experiment, the authors showed a decrease of motor evoked potentials (MEPs) recorded from hand muscles when processing hand-related verbs as compared to foot-related verbs. Similarly, MEPs recorded from leg muscles decreased when participants processed foot-related as compared to hand-related verbs. In the behavioral experiment, using the same stimuli and a semantic decision task the authors found slower RTs when the participants used the body effector (hand or foot) involved in the actual execution of the action expressed by the presented verb to give their motor responses. These findings were interpreted as an interference effect due to a simultaneous involvement of the motor system in both a language and a motor task. Our replication aimed to enlarge the sample size and replicate the findings with higher statistical power. The TMS experiment showed a significant modulation of hand MEPs, but in the sense of a motor facilitation when processing hand-related verbs. On the contrary, the behavioral experiment did not show significant results. The results are discussed within the general debate on the time-course of the modulation of motor cortex during implicit and explicit language processing and in relation to the studies on action observation/understanding.}, language = {en} } @article{GianelliDallaVolta2015, author = {Gianelli, Claudia and Dalla Volta, Riccardo}, title = {Does listening to action-related sentences modulate the activity of the motor system?}, series = {Frontiers in psychology}, volume = {5}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.01511}, pages = {8}, year = {2015}, abstract = {The neurophysiological and behavioral correlates of action-related language processing have been debated for long time. A precursor in this field was the study by Buccino et al. (2005) combining transcranial magnetic stimulation (TMS) and behavioral measures (reaction times, RTs) to study the effect of listening to hand- and foot-related sentences. In the TMS experiment, the authors showed a decrease of motor evoked potentials (MEPs) recorded from hand muscles when processing hand-related verbs as compared to foot-related verbs. Similarly, MEPs recorded from leg muscles decreased when participants processed foot-related as compared to hand-related verbs. In the behavioral experiment, using the same stimuli and a semantic decision task the authors found slower RTs when the participants used the body effector (hand or foot) involved in the actual execution of the action expressed by the presented verb to give their motor responses. These findings were interpreted as an interference effect due to a simultaneous involvement of the motor system in both a language and a motor task. Our replication aimed to enlarge the sample size and replicate the findings with higher statistical power. The TMS experiment showed a significant modulation of hand MEPs, but in the sense of a motor facilitation when processing hand-related verbs. On the contrary, the behavioral experiment did not show significant results. The results are discussed within the general debate on the time-course of the modulation of motor cortex during implicit and explicit language processing and in relation to the studies on action observation/understanding.}, language = {en} } @article{GianelliKuehneLoPrestietal.2020, author = {Gianelli, Claudia and K{\"u}hne, Katharina and Lo Presti, Sara and Mencaraglia, Silvia and Dalla Volta, Riccardo}, title = {Action processing in the motor system}, series = {Brain and cognition : a journal of experimental and clinical research}, volume = {139}, journal = {Brain and cognition : a journal of experimental and clinical research}, publisher = {Elsevier}, address = {San Diego}, issn = {0278-2626}, doi = {10.1016/j.bandc.2019.105510}, pages = {10}, year = {2020}, abstract = {In two experiments, we compared the dynamics of corticospinal excitability when processing visually or linguistically presented tool-oriented hand actions in native speakers and sequential bilinguals. In a third experiment we used the same procedure to test non-motor, low-level stimuli, i.e. scrambled images and pseudo-words. Stimuli were presented in sequence: pictures (tool + tool-oriented hand action or their scrambled counterpart) and words (tool noun + tool-action verb or pseudo-words). Experiment 1 presented German linguistic stimuli to native speakers, while Experiment 2 presented English stimuli to non-natives. Experiment 3 tested Italian native speakers. Single-pulse trascranial magnetic stimulation (spTMS) was applied to the left motor cortex at five different timings: baseline, 200 ms after tool/noun onset, 150, 350 and 500 ms after hand/verb onset with motor-evoked potentials (MEPs) recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. We report strong similarities in the dynamics of corticospinal excitability across the visual and linguistic modalities. MEPs' suppression started as early as 150 ms and lasted for the duration of stimulus presentation (500 ms). Moreover, we show that this modulation is absent for stimuli with no motor content. Overall, our study supports the notion of a core, overarching system of action semantics shared by different modalities.}, language = {en} } @phdthesis{Kuhnke2021, author = {Kuhnke, Philipp}, title = {The neural basis of conceptual knowledge retrieval}, doi = {10.25932/publishup-51441}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514414}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2021}, abstract = {Conceptual knowledge about objects, people and events in the world is central to human cognition, underlying core cognitive abilities such as object recognition and use, and word comprehension. Previous research indicates that concepts consist of perceptual and motor features represented in modality-specific perceptual-motor brain regions. In addition, cross-modal convergence zones integrate modality-specific features into more abstract conceptual representations. However, several questions remain open: First, to what extent does the retrieval of perceptual-motor features depend on the concurrent task? Second, how do modality-specific and cross-modal regions interact during conceptual knowledge retrieval? Third, which brain regions are causally relevant for conceptually-guided behavior? This thesis addresses these three key issues using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in the healthy human brain. Study 1 - an fMRI activation study - tested to what extent the retrieval of sound and action features of concepts, and the resulting engagement of auditory and somatomotor brain regions depend on the concurrent task. 40 healthy human participants performed three different tasks - lexical decision, sound judgment, and action judgment - on words with a high or low association to sounds and actions. We found that modality-specific regions selectively respond to task-relevant features: Auditory regions selectively responded to sound features during sound judgments, and somatomotor regions selectively responded to action features during action judgments. Unexpectedly, several regions (e.g. the left posterior parietal cortex; PPC) exhibited a task-dependent response to both sound and action features. We propose these regions to be "multimodal", and not "amodal", convergence zones which retain modality-specific information. Study 2 - an fMRI connectivity study - investigated the functional interaction between modality-specific and multimodal areas during conceptual knowledge retrieval. Using the above fMRI data, we asked (1) whether modality-specific and multimodal regions are functionally coupled during sound and action feature retrieval, (2) whether their coupling depends on the task, (3) whether information flows bottom-up, top-down, or bidirectionally, and (4) whether their coupling is behaviorally relevant. We found that functional coupling between multimodal and modality-specific areas is task-dependent, bidirectional, and relevant for conceptually-guided behavior. Left PPC acted as a connectivity "switchboard" that flexibly adapted its coupling to task-relevant modality-specific nodes. Hence, neuroimaging studies 1 and 2 suggested a key role of left PPC as a multimodal convergence zone for conceptual knowledge. However, as neuroimaging is correlational, it remained unknown whether left PPC plays a causal role as a multimodal conceptual hub. Therefore, study 3 - a TMS study - tested the causal relevance of left PPC for sound and action feature retrieval. We found that TMS over left PPC selectively impaired action judgments on low sound-low action words, as compared to sham stimulation. Computational simulations of the TMS-induced electrical field revealed that stronger stimulation of left PPC was associated with worse performance on action, but not sound, judgments. These results indicate that left PPC causally supports conceptual processing when action knowledge is task-relevant and cannot be compensated by sound knowledge. Our findings suggest that left PPC is specialized for action knowledge, challenging the view of left PPC as a multimodal conceptual hub. Overall, our studies support "hybrid theories" which posit that conceptual processing involves both modality-specific perceptual-motor regions and cross-modal convergence zones. In our new model of the conceptual system, we propose conceptual processing to rely on a representational hierarchy from modality-specific to multimodal up to amodal brain regions. Crucially, this hierarchical system is flexible, with different regions and connections being engaged in a task-dependent fashion. Our model not only reconciles the seemingly opposing grounded cognition and amodal theories, it also incorporates task dependency of conceptually-related brain activity and connectivity, thereby resolving several current issues on the neural basis of conceptual knowledge retrieval.}, language = {en} } @article{DordevicHoelzerRussoetal.2022, author = {Dordevic, Milos and H{\"o}lzer, Sonja and Russo, Augusta and Garc{\´i}a Alanis, Jos{\´e} Carlos and M{\"u}ller, Notger Germar}, title = {The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting—A cTBS Study}, series = {Life}, volume = {12}, journal = {Life}, edition = {8}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2075-1729}, doi = {10.3390/life12081239}, pages = {1 -- 13}, year = {2022}, abstract = {As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding.}, language = {en} } @misc{DordevicHoelzerRussoetal.2022, author = {Dordevic, Milos and H{\"o}lzer, Sonja and Russo, Augusta and Garc{\´i}a Alanis, Jos{\´e} Carlos and M{\"u}ller, Notger Germar}, title = {The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting—A cTBS Study}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Gesundheitswissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Gesundheitswissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-56554}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565542}, pages = {1 -- 13}, year = {2022}, abstract = {As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding.}, language = {en} }