@phdthesis{Hanf2015, author = {Hanf, Franziska Stefanie}, title = {South Asian summer monsoon variability: a modelling study with the atmospheric regional climate model HIRHAM5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89331}, school = {Universit{\"a}t Potsdam}, pages = {ii, 126}, year = {2015}, abstract = {The lives of more than 1/6 th of the world population is directly affected by the caprices of the South Asian summer monsoon rainfall. India receives around 78 \% of the annual precipitation during the June-September months, the summer monsoon season of South Asia. But, the monsoon circulation is not consistent throughout the entire summer season. Episodes of heavy rainfall (active periods) and low rainfall (break periods) are inherent to the intraseasonal variability of the South Asian summer monsoon. Extended breaks or long-lasting dryness can result in droughts and hence trigger crop failures and in turn famines. Furthermore, India's electricity generation from renewable sources (wind and hydro-power), which is increasingly important in order to satisfy the rapidly rising demand for energy, is highly reliant on the prevailing meteorology. The major drought years 2002 and 2009 for the Indian summer monsoon during the last decades, which are results of the occurrence of multiple extended breaks, emphasise exemplary that the understanding of the monsoon system and its intraseasonal variation is of greatest importance. Although, numerous studies based on observations, reanalysis data and global model simulations have been carried out with the focus on monsoon active and break phases over India, the understanding of the monsoon intraseasonal variability is only in the infancy stage. Regional climate models could benefit the comprehension of monsoon breaks by its resolution advantage. This study investigates moist dynamical processes that initiate and maintain breaks during the South Asian summer monsoon using the atmospheric regional climate model HIRHAM5 at a horizontal resolution of 25 km forced by the ECMWF ERA Interim reanalysis for the period 1979-2012. By calculating moisture and moist static energy budgets the various competing mechanisms leading to extended breaks are quantitatively estimated. Advection of dry air from the deserts of western Asia towards central India is the dominant moist dynamical process in initiating extended break conditions over South Asia. Once initiated, the extended breaks are maintained due to many competing mechanisms: (i) the anomalous easterlies at the southern flank of this anticyclonic anomaly weaken the low-level cross-equatorial jet and thus the moisture transport into the monsoon region, (ii) differential radiative heating over the continental and the oceanic tropical convergence zone induces a local Hadley circulation with anomalous rising over the equatorial Indian Ocean and descent over central India, and (iii) a cyclonic response to positive rainfall anomalies over the near-equatorial Indian Ocean amplifies the anomalous easterlies over India and hence contributes to the low-level divergence over central India. A sensitivity experiment that mimics a scenario of higher atmospheric aerosol concentrations over South Asia addresses a current issue of large uncertainty: the role aerosols play in suppressing monsoon rainfall and hence in triggering breaks. To study the indirect aerosol effects the cloud droplet number concentration was increased to imitate the aerosol's function as cloud condensation nuclei. The sensitivity experiment with altered microphysical cloud properties shows a reduction in the summer monsoon precipitation together with a weakening of the South Asian summer monsoon. Several physical mechanisms are proposed to be responsible for the suppressed monsoon rainfall: (i) according to the first indirect radiative forcing the increase in the number of cloud droplets causes an increase in the cloud reflectivity of solar radiation, leading to a climate cooling over India which in turn reduces the hydrological cycle, (ii) a stabilisation of the troposphere induced by a differential cooling between the surface and the upper troposphere over central India inhibits the growth of deep convective rain clouds, (iii) an increase of the amount of low and mid-level clouds together with a decrease in high-level cloud amount amplify the surface cooling and hence the atmospheric stability, and (iv) dynamical changes of the monsoon manifested as a anomalous anticyclonic circulation over India reduce the moisture transport into the monsoon region. The study suggests that the changes in the total precipitation, which are dominated by changes in the convective precipitation, mainly result from the indirect radiative forcing. Suppression of rainfall due to the direct microphysical effect is found to be negligible over India. Break statistics of the polluted cloud scenario indicate an increase in the occurrence of short breaks (3 days), while the frequency of extended breaks (> 7 days) is clearly not affected. This disproves the hypothesis that more and smaller cloud droplets, caused by a high load of atmospheric aerosols trigger long drought conditions over central India.}, language = {en} } @phdthesis{Hoffmann2011, author = {Hoffmann, Anne}, title = {Comparative aerosol studies based on multi-wavelength Raman LIDAR at Ny-{\AA}lesund, Spitsbergen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52426}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Arctic is a particularly sensitive area with respect to climate change due to the high surface albedo of snow and ice and the extreme radiative conditions. Clouds and aerosols as parts of the Arctic atmosphere play an important role in the radiation budget, which is, as yet, poorly quantified and understood. The LIDAR (Light Detection And Ranging) measurements presented in this PhD thesis contribute with continuous altitude resolved aerosol profiles to the understanding of occurrence and characteristics of aerosol layers above Ny-{\AA}lesund, Spitsbergen. The attention was turned to the analysis of periods with high aerosol load. As the Arctic spring troposphere exhibits maximum aerosol optical depths (AODs) each year, March and April of both the years 2007 and 2009 were analyzed. Furthermore, stratospheric aerosol layers of volcanic origin were analyzed for several months, subsequently to the eruptions of the Kasatochi and Sarychev volcanoes in summer 2008 and 2009, respectively. The Koldewey Aerosol Raman LIDAR (KARL) is an instrument for the active remote sensing of atmospheric parameters using pulsed laser radiation. It is operated at the AWIPEV research base and was fundamentally upgraded within the framework of this PhD project. It is now equipped with a new telescope mirror and new detection optics, which facilitate atmospheric profiling from 450m above sea level up to the mid-stratosphere. KARL provides highly resolved profiles of the scattering characteristics of aerosol and cloud particles (backscattering, extinction and depolarization) as well as water vapor profiles within the lower troposphere. Combination of KARL data with data from other instruments on site, namely radiosondes, sun photometer, Micro Pulse LIDAR, and tethersonde system, resulted in a comprehensive data set of scattering phenomena in the Arctic atmosphere. The two spring periods March and April 2007 and 2009 were at first analyzed based on meteorological parameters, like local temperature and relative humidity profiles as well as large scale pressure patterns and air mass origin regions. Here, it was not possible to find a clear correlation between enhanced AOD and air mass origin. However, in a comparison of two cloud free periods in March 2007 and April 2009, large AOD values in 2009 coincided with air mass transport through the central Arctic. This suggests the occurrence of aerosol transformation processes during the aerosol transport to Ny-{\AA}lesund. Measurements on 4 April 2009 revealed maximum AOD values of up to 0.12 and aerosol size distributions changing with altitude. This and other performed case studies suggest the differentiation between three aerosol event types and their origin: Vertically limited aerosol layers in dry air, highly variable hygroscopic boundary layer aerosols and enhanced aerosol load across wide portions of the troposphere. For the spring period 2007, the available KARL data were statistically analyzed using a characterization scheme, which is based on optical characteristics of the scattering particles. The scheme was validated using several case studies. Volcanic eruptions in the northern hemisphere in August 2008 and June 2009 arose the opportunity to analyze volcanic aerosol layers within the stratosphere. The rate of stratospheric AOD change was similar within both years with maximum values above 0.1 about three to five weeks after the respective eruption. In both years, the stratospheric AOD persisted at higher rates than usual until the measurements were stopped in late September due to technical reasons. In 2008, up to three aerosol layers were detected, the layer structure in 2009 was characterized by up to six distinct and thin layers which smeared out to one broad layer after about two months. The lowermost aerosol layer was continuously detected at the tropopause altitude. Three case studies were performed, all revealed rather large indices of refraction of m = (1.53-1.55) - 0.02i, suggesting the presence of an absorbing carbonaceous component. The particle radius, derived with inversion calculations, was also similar in both years with values ranging from 0.16 to 0.19 μm. However, in 2009, a second mode in the size distribution was detected at about 0.5 μm. The long term measurements with the Koldewey Aerosol Raman LIDAR in Ny-{\AA}lesund provide the opportunity to study Arctic aerosols in the troposphere and the stratosphere not only in case studies but on longer time scales. In this PhD thesis, both, tropospheric aerosols in the Arctic spring and stratospheric aerosols following volcanic eruptions have been described qualitatively and quantitatively. Case studies and comparative studies with data of other instruments on site allowed for the analysis of microphysical aerosol characteristics and their temporal evolution.}, language = {en} }