@article{TiseanuParvulescuParvulescuetal.2010, author = {Tiseanu, Carmen and Parvulescu, Vasile and Parvulescu, Victoria and Cotoi, Elena and Gessner, Andre and Kumke, Michael Uwe and Simon, Simion and Vasiliu, Florin}, title = {Structural and photoluminescence characterization of mesoporous silicon-phosphates}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2010.07.015}, year = {2010}, abstract = {Two different types of mesoporous silicon-phosphate supports using different surfactants (a mixture of (CH3)(3)C13H27NBr with an organophosphorus coupling molecule (HO-PO(i-C3H7)(2)) and with a co-surfactant ((C2H5)(3)(C6H5)PCl), respectively) were synthesized. Trivalent europium (Eu) ions were immobilized via ion-exchange on these supports. The resulting materials were characterized using nitrogen adsorption isotherms at -196 degrees C, thermogravimetric analysis, SEM, TEM, FT-IR, PXRD, CP/MAS. (HSi)-H-1-Si-29 and P-31 NMR, DR-UV-vis as well as steady- state and time-resolved photoluminescence spectroscopy. The results evidenced that the co-polymerization of silicon and phosphorous yielded a unique morphology in these materials. Following calcination at 450 and 900 degrees C europium- exchanged silicon-phosphates with great surface area (BET=600-705 m(2) g(-1)) and 3.4 nm sized mesopores were obtained. The differences among the optical properties of the non-calcined europium materials such as the emission lifetimes, local environment at the europium sites or the relative contribution of the upper excited levels to the total photoluminescence were assigned to the surfactants used in the synthesis. Calcination of the silicon-phosphates at higher temperatures than 450 degrees C did not induce major changes in the structural properties: in contrast, photoluminescence properties of europium were markedly improved in terms of intensity and average lifetime.}, language = {en} } @article{TiseanuParvulescuCojocaruetal.2010, author = {Tiseanu, Carmen and Parvulescu, Vasile Ion and Cojocaru, Bogdan and Lorenz-Fonfria, Victor A. and Kumke, Michael Uwe and Gessner, Andre and Enculescu, Ion}, title = {Polymer-microporous host interactions probed by photoluminescence spectroscopy}, issn = {1463-9076}, doi = {10.1039/B922591a}, year = {2010}, abstract = {Zeolites NaY and ZSM-5 were used as hosts for styrene polymerization after ion-exchange with europium ions. The parent and hybrid, polystyrene coated Eu-NaY (Eu-NaY/PS) and Eu-ZSM-5 (Eu-ZSM-5/PS) zeolites were investigated by using thermal analysis, SEM, PXRD, FT-IR, DR-UV/Vis, steady state and time-resolved photoluminescence spectroscopy. FT-IR spectra evidenced for the interaction between the zeolitic hosts and polystyrene while the PXRD spectra supported for the presence of the polymer inside the channels/pores of Eu-NaY/PS and Eu-ZSM-5/PS materials. The optical properties of Eu-NaY/PS and Eu-ZSM-5/PS were significantly changed relative to those of the parent zeolites, giving further evidence for the presence of polymer inside zeolites. An interesting case is presented by NaY zeolite: following styrene polymerization, the polymer interacted selectively with one of the two main species co-existing inside zeolite while for ZSM-5 a similar effect was not observed.}, language = {en} } @article{KukeMarmodeeEidneretal.2010, author = {Kuke, S. and Marmodee, Bettina and Eidner, Sascha and Schilde, Uwe and Kumke, Michael Uwe}, title = {Intramolecular deactivation processes in complexes of salicylic acid or glycolic acid with Eu(III)}, issn = {0584-8539}, year = {2010}, abstract = {The complexation of Eu(III) by 2-hydroxy benzoic acid (2HB) or glycolic acid (GL) was investigated using steady- state and time-resolved laser spectroscopy. Experiments were carried out in H2O as well as in D2O in the temperature range of View the MathML source. The Eu(III) luminescence spectra and luminescence decay times were evaluated with respect to the temperature dependence of (i) the luminescence decay time ;, (ii) the energy of the View the MathML source transition, (iii) the width of the View the MathML source transition, and (iv) the asymmetry ratio calculated from the luminescence intensities of the View the MathML source and View the MathML source transition, respectively. The differences in ligand-related luminescence quenching are discussed. Based on the temperature dependence of the luminescence decay times an activation energy for the ligand-specific non-radiative deactivation in Eu(III)-2HB or Eu(III)-GL complexes was determined. It is stressed that ligand-specific quenching processes (other than OH quenching induced by water molecules) need to be determined and considered in detail, in order to extract speciation- relevant information from luminescence data (e.g., estimation of the number of water molecules nH2O in the first coordination sphere of Eu(III)). In case of 2HB, conclusions drawn from the evaluation of the Eu(III) luminescence are compared with results of a X-ray structure analysis.}, language = {en} }