@misc{SchottKretzschmarAckeretal.2014, author = {Schott, Juliane and Kretzschmar, Jerome and Acker, Margret and Eidner, Sascha and Kumke, Michael Uwe and Drobot, Bj{\"o}rn and Barkleit, Astrid and Taut, Steffen and Brendler, Vinzenz and Stumpf, Thorsten}, title = {Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98774}, pages = {13}, year = {2014}, abstract = {In the presence of polyborates (detected by 11B-NMR) the formation of a weak Eu(III) borate complex (lg β11 ∼ 2, estimated) was observed by time-resolved laser-induced fluorescence spectroscopy (TRLFS). This complex is a precursor for the formation of a solid Eu(III) borate species. The formation of this solid in solution was investigated by TRLFS as a function of the total boron concentration: the lower the total boron concentration, the slower is the solid formation. The solid Eu(III) borate was characterized by IR spectroscopy, powder XRD and solid-state TRLFS. The determination of the europium to boron ratio portends the existence of pentaborate units in the amorphous solid.}, language = {en} } @misc{PlehnMegowMay2014, author = {Plehn, Thomas and Megow, J{\"o}rg and May, Volkhard}, title = {Concerted charge and energy transfer processes in a highly flexible fullerene-dye system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98791}, pages = {10}, year = {2014}, abstract = {Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum-classical version of the F{\"o}rster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye-fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained.}, language = {en} } @misc{WęcławskiTasiorHammannetal.2014, author = {Węcławski, Marek K. and Tasior, Mariusz and Hammann, Tommy and Cywiński, Piotr J. and Gryko, Daniel T.}, title = {From π-expanded coumarins to π-expanded pentacenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98822}, pages = {4}, year = {2014}, abstract = {The synthesis of two novel types of π-expanded coumarins has been developed. Modified Knoevenagel bis-condensation afforded 3,9-dioxa-perylene-2,8-diones. Subsequent oxidative aromatic coupling or light driven electrocyclization reaction led to dibenzo-1,7-dioxacoronene-2,8-dione. Unparalleled synthetic simplicity, straightforward purification and superb optical properties have the potential to bring these perylene and coronene analogs towards various applications.}, language = {en} } @misc{CywińskiNonoCharbonniereetal.2014, author = {Cywiński, Piotr J. and Nono, Katia Nchimi and Charbonni{\`e}re, Lo{\"i}c J. and Hammann, Tommy and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95390}, pages = {6060 -- 6067}, year = {2014}, abstract = {A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved F{\"o}rster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surface-functionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with F{\"o}rster theory, F{\"o}rster-radii (R0) were found to be around 60 {\AA} for organic dyes and around 105 {\AA} for QDs. The FRET efficiency (η) reached 80\% and 25\% for dye and QD acceptors, respectively. Physical donor-acceptor distances (r) have been determined in the range 45-60 {\AA} for organic dye acceptors, while for acceptor QDs between 120 {\AA} and 145 {\AA}. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing.}, language = {en} } @phdthesis{Giordano2014, author = {Giordano, Cristina}, title = {A neglected world: transition metal nitride and metal carbide based nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75375}, school = {Universit{\"a}t Potsdam}, pages = {191}, year = {2014}, abstract = {Potentiality of nanosized materials has been largely proved but a closer look shows that a significant percentage of this research is related to oxides and metals, while the number drastically drops for metallic ceramics, namely transition metal nitrides and metal carbides. The lack of related publications do not reflect their potential but rather the difficulties related to their synthesis as dense and defect-free structures, fundamental prerequisites for advanced mechanical applications. The present habilitation work aims to close the gap between preparation and processing, indicating novel synthetic pathways for a simpler and sustainable synthesis of transition metal nitride (MN) and carbide (MC) based nanostructures and easier processing thereafter. In spite of simplicity and reliability, the designed synthetic processes allow the production of functional materials, with the demanded size and morphology. The goal was achieved exploiting classical and less-classical precursors, ranging from common metal salts and molecules (e.g. urea, gelatin, agar, etc), to more exotic materials, such as leafs, filter paper and even wood. It was found that the choice of precursors and reaction conditions makes it possible to control chemical composition (going for instance from metal oxides to metal oxy-nitrides to metal nitrides, or from metal nitrides to metal carbides, up to quaternary systems), size (from 5 to 50 nm) and morphology (going from mere spherical nanoparticles to rod-like shapes, fibers, layers, meso-porous and hierarchical structures, etc). The nature of the mixed precursors also allows the preparation of metal nitrides/carbides based nanocomposites, thus leading to multifunctional materials (e.g. MN/MC@C, MN/MC@PILs, etc) but also allowing dispersion in liquid media. Control over composition, size and morphology is obtained with simple adjustment of the main route, but also coupling it with processes such as electrospin, aerosol spray, bio-templating, etc. Last but not least, the nature of the precursor materials also allows easy processing, including printing, coating, casting, film and thin layers preparation, etc). The designed routes are, concept-wise, similar and they all start by building up a secondary metal ion-N/C precursor network, which converts, upon heat treatment, into an intermediate "glass". This glass stabilizes the nascent nanoparticles during their nucleation and impairs their uncontrolled growth during the heat treatment (scheme 1). This way, one of the main problems related to the synthesis of MN/MC, i.e. the need of very high temperature, could also be overcome (from up to 2000°C, for classical synthesis, down to 700°C in the present cases). The designed synthetic pathways are also conceived to allow usage of non-toxic compounds and to minimize (or even avoid) post-synthesis purification, still bringing to phase pure and well-defined (crystalline) nanoparticles. This research aids to simplify the preparation of MN/MC, making these systems now readily available in suitable amounts both for fundamental and applied science. The prepared systems have been tested (in some cases for the first time) in many different fields, e.g. battery (MnN0.43@C shown a capacity stabilized at a value of 230 mAh/g, with coulombic efficiencies close to 100\%), as alternative magnetic materials (Fe3C nanoparticles were prepared with different size and therefore different magnetic behavior, superparamagnetic or ferromagnetic, showing a saturation magnetization value up to 130 emu/g, i.e. similar to the value expected for the bulk material), as filters and for the degradation of organic dyes (outmatching the performance of carbon), as catalysts (both as active phase but also as active support, leading to high turnover rate and, more interesting, to tunable selectivity). Furthermore, with this route, it was possible to prepare for the first time, to the best of our knowledge, well-defined and crystalline MnN0.43, Fe3C and Zn1.7GeN1.8O nanoparticles via bottom-up approaches. Once the synthesis of these materials can be made straightforward, any further modification, combination, manipulation, is in principle possible and new systems can be purposely conceived (e.g. hybrids, nanocomposites, ferrofluids, etc).}, language = {en} } @misc{MetzlerJeonCherstvyetal.2014, author = {Metzler, Ralf and Jeon, Jae-Hyung and Cherstvy, Andrey G. and Barkai, Eli}, title = {Anomalous diffusion models and their properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74448}, pages = {24128 -- 24164}, year = {2014}, abstract = {Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.}, language = {en} } @misc{WessigGerngrossPapeetal.2014, author = {Wessig, Pablo and Gerngroß, Maik and Pape, Simon and Bruhns, Philipp and Weber, Jens}, title = {Novel porous materials based on oligospiroketals (OSK)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74466}, pages = {31123 -- 31129}, year = {2014}, abstract = {New porous materials based on covalently connected monomers are presented. The key step of the synthesis is an acetalisation reaction. In previous years we used acetalisation reactions extensively to build up various molecular rods. Based on this approach, investigations towards porous polymeric materials were conducted by us. Here we wish to present the results of these studies in the synthesis of 1D polyacetals and porous 3D polyacetals. By scrambling experiments with 1D acetals we could prove that exchange reactions occur between different building blocks (evidenced by MALDI-TOF mass spectrometry). Based on these results we synthesized porous 3D polyacetals under the same mild conditions.}, language = {en} } @misc{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and L{\"u}bcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74492}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @misc{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity}, number = {168}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74021}, pages = {1591 -- 1601}, year = {2014}, abstract = {We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.}, language = {en} } @misc{MeyerMatissekMuelleretal.2014, author = {Meyer, S{\"o}ren and Matissek, M. and M{\"u}ller, Sandra Marie and Taleshi, M. S. and Ebert, Franziska and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {In vitro toxicological characterisation of three arsenic-containing hydrocarbons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74201}, pages = {1023 -- 1033}, year = {2014}, abstract = {Arsenic-containing hydrocarbons are one group of fat-soluble organic arsenic compounds (arsenolipids) found in marine fish and other seafood. A risk assessment of arsenolipids is urgently needed, but has not been possible because of the total lack of toxicological data. In this study the cellular toxicity of three arsenic-containing hydrocarbons was investigated in cultured human bladder (UROtsa) and liver (HepG2) cells. Cytotoxicity of the arsenic-containing hydrocarbons was comparable to that of arsenite, which was applied as the toxic reference arsenical. A large cellular accumulation of arsenic, as measured by ICP-MS/MS, was observed after incubation of both cell lines with the arsenolipids. Moreover, the toxic mode of action shown by the three arsenic-containing hydrocarbons seemed to differ from that observed for arsenite. Evidence suggests that the high cytotoxic potential of the lipophilic arsenicals results from a decrease in the cellular energy level. This first in vitro based risk assessment cannot exclude a risk to human health related to the presence of arsenolipids in seafood, and indicates the urgent need for further toxicity studies in experimental animals to fully assess this possible risk.}, language = {en} } @misc{UnterbergLeffersHuebneretal.2014, author = {Unterberg, Marlies and Leffers, Larissa and H{\"u}bner, Florian and Humpf, Hans-Ulrich and Lepikhov, Konstantin and Walter, J{\"o}rn and Ebert, Franziska and Schwerdtle, Tanja}, title = {Toxicity of arsenite and thio-DMAV after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76239}, pages = {456 -- 464}, year = {2014}, abstract = {This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAsIII and its metabolite thio-DMAV were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAsIII and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMAV. Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAsIII and thio-DMAV caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMAV; iAsIII induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies.}, language = {en} } @misc{GhoshCherstvyMetzler2014, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Non-universal tracer diffusion in crowded media of non-inert obstacles}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77128}, pages = {1847 -- 1858}, year = {2014}, abstract = {We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.}, language = {en} } @misc{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76961}, pages = {472 -- 488}, year = {2014}, abstract = {The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.}, language = {en} } @phdthesis{Faivre2014, author = {Faivre, Damien}, title = {Biological and biomimetic formation and organization of magnetic nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72022}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Biological materials have ever been used by humans because of their remarkable properties. This is surprising since the materials are formed under physiological conditions and with commonplace constituents. Nature thus not only provides us with inspiration for designing new materials but also teaches us how to use soft molecules to tune interparticle and external forces to structure and assemble simple building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosomes represent a striking example of such an accomplishment where a very simple living organism controls the properties of inorganics via organics at the nanometer-scale to form a single magnetic dipole that orients the cell in the Earth magnetic field lines. My group has developed a biological and a bio-inspired research based on these bacteria. My research, at the interface between chemistry, materials science, physics, and biology focuses on how biological systems synthesize, organize and use minerals. We apply the design principles to sustainably form hierarchical materials with controlled properties that can be used e.g. as magnetically directed nanodevices towards applications in sensing, actuating, and transport. In this thesis, I thus first present how magnetotactic bacteria intracellularly form magnetosomes and assemble them in chains. I developed an assay, where cells can be switched from magnetic to non-magnetic states. This enabled to study the dynamics of magnetosome and magnetosome chain formation. We found that the magnetosomes nucleate within minutes whereas chains assembles within hours. Magnetosome formation necessitates iron uptake as ferrous or ferric ions. The transport of the ions within the cell leads to the formation of a ferritin-like intermediate, which subsequently is transported and transformed within the magnetosome organelle in a ferrihydrite-like precursor. Finally, magnetite crystals nucleate and grow toward their mature dimension. In addition, I show that the magnetosome assembly displays hierarchically ordered nano- and microstructures over several levels, enabling the coordinated alignment and motility of entire populations of cells. The magnetosomes are indeed composed of structurally pure magnetite. The organelles are partly composed of proteins, which role is crucial for the properties of the magnetosomes. As an example, we showed how the protein MmsF is involved in the control of magnetosome size and morphology. We have further shown by 2D X-ray diffraction that the magnetosome particles are aligned along the same direction in the magnetosome chain. We then show how magnetic properties of the nascent magnetosome influence the alignment of the particles, and how the proteins MamJ and MamK coordinate this assembly. We propose a theoretical approach, which suggests that biological forces are more important than physical ones for the chain formation. All these studies thus show how magnetosome formation and organization are under strict biological control, which is associated with unprecedented material properties. Finally, we show that the magnetosome chain enables the cells to find their preferred oxygen conditions if the magnetic field is present. The synthetic part of this work shows how the understanding of the design principles of magnetosome formation enabled me to perform biomimetic synthesis of magnetite particles within the highly desired size range of 25 to 100 nm. Nucleation and growth of such particles are based on aggregation of iron colloids termed primary particles as imaged by cryo-high resolution TEM. I show how additives influence magnetite formation and properties. In particular, MamP, a so-called magnetochrome proteins involved in the magnetosome formation in vivo, enables the in vitro formation of magnetite nanoparticles exclusively from ferrous iron by controlling the redox state of the process. Negatively charged additives, such as MamJ, retard magnetite nucleation in vitro, probably by interacting with the iron ions. Other additives such as e.g. polyarginine can be used to control the colloidal stability of stable-single domain sized nanoparticles. Finally, I show how we can "glue" magnetic nanoparticles to form propellers that can be actuated and swim with the help of external magnetic fields. We propose a simple theory to explain the observed movement. We can use the theoretical framework to design experimental conditions to sort out the propellers depending on their size and effectively confirm this prediction experimentally. Thereby, we could image propellers with size down to 290 nm in their longer dimension, much smaller than what perform so far.}, language = {en} } @phdthesis{Ermeydan2014, author = {Ermeydan, Mahmut Ali}, title = {Wood cell wall modification with hydrophobic molecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71325}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Wood is used for many applications because of its excellent mechanical properties, relative abundance and as it is a renewable resource. However, its wider utilization as an engineering material is limited because it swells and shrinks upon moisture changes and is susceptible to degradation by microorganisms and/or insects. Chemical modifications of wood have been shown to improve dimensional stability, water repellence and/or durability, thus increasing potential service-life of wood materials. However current treatments are limited because it is difficult to introduce and fix such modifications deep inside the tissue and cell wall. Within the scope of this thesis, novel chemical modification methods of wood cell walls were developed to improve both dimensional stability and water repellence of wood material. These methods were partly inspired by the heartwood formation in living trees, a process, that for some species results in an insertion of hydrophobic chemical substances into the cell walls of already dead wood cells, In the first part of this thesis a chemistry to modify wood cell walls was used, which was inspired by the natural process of heartwood formation. Commercially available hydrophobic flavonoid molecules were effectively inserted in the cell walls of spruce, a softwood species with low natural durability, after a tosylation treatment to obtain "artificial heartwood". Flavonoid inserted cell walls show a reduced moisture absorption, resulting in better dimensional stability, water repellency and increased hardness. This approach was quite different compared to established modifications which mainly address hydroxyl groups of cell wall polymers with hydrophilic substances. In the second part of the work in-situ styrene polymerization inside the tosylated cell walls was studied. It is known that there is a weak adhesion between hydrophobic polymers and hydrophilic cell wall components. The hydrophobic styrene monomers were inserted into the tosylated wood cell walls for further polymerization to form polystyrene in the cell walls, which increased the dimensional stability of the bulk wood material and reduced water uptake of the cell walls considerably when compared to controls. In the third part of the work, grafting of another hydrophobic and also biodegradable polymer, poly(ɛ-caprolactone) in the wood cell walls by ring opening polymerization of ɛ-caprolactone was studied at mild temperatures. Results indicated that polycaprolactone attached into the cell walls, caused permanent swelling of the cell walls up to 5\%. Dimensional stability of the bulk wood material increased 40\% and water absorption reduced more than 35\%. A fully biodegradable and hydrophobized wood material was obtained with this method which reduces disposal problem of the modified wood materials and has improved properties to extend the material's service-life. Starting from a bio-inspired approach which showed great promise as an alternative to standard cell wall modifications we showed the possibility of inserting hydrophobic molecules in the cell walls and supported this fact with in-situ styrene and ɛ-caprolactone polymerization into the cell walls. It was shown in this thesis that despite the extensive knowledge and long history of using wood as a material there is still room for novel chemical modifications which could have a high impact on improving wood properties.}, language = {en} } @misc{MorgnerLecointreCharbonniereetal.2014, author = {Morgner, Frank and Lecointre, Alexandre and Charbonni{\`e}re, Loic J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detecting free hemoglobin in blood plasma and serum with luminescent terbium complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99485}, pages = {6}, year = {2014}, abstract = {Hemolysis, the rupturing of red blood cells, can result from numerous medical conditions (in vivo) or occur after collecting blood specimen or extracting plasma and serum out of whole blood (in vitro). In clinical laboratory practice, hemolysis can be a serious problem due to its potential to bias detection of various analytes or biomarkers. Here we present the first ''mix-and-measure'' method to assess the degree of hemolysis in biosamples using luminescence spectroscopy. Luminescent terbium complexes (LTC) were studied in the presence of free hemoglobin (Hb) as indicators for hemolysis in TRIS-buffer, and in fresh human plasma with absorption, excitation and emission measurements. Our findings indicate dynamic as well as resonance energy transfer (FRET) between the LTC and the porphyrin ligand of hemoglobin. This transfer leads to a decrease in luminescence intensity and decay time even at nanomolar hemoglobin concentrations either in buffer or plasma. Luminescent terbium complexes are very sensitive to free hemoglobin in buffer and blood plasma. Due to the instant change in luminescence properties of the LTC in presence of Hb it is possible to access the concentration of hemoglobin via spectroscopic methods without incubation time or further treatment of the sample thus enabling a rapid and sensitive detection of hemolysis in clinical diagnostics.}, language = {en} } @misc{Laschewsky2014, author = {Laschewsky, Andr{\´e}}, title = {Structures and synthesis of zwitterionic polymers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1043}, issn = {1866-8372}, doi = {10.25932/publishup-47616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476167}, pages = {60}, year = {2014}, abstract = {The structures and synthesis of polyzwitterions ("polybetaines") are reviewed, emphasizing the literature of the past decade. Particular attention is given to the general challenges faced, and to successful strategies to obtain polymers with a true balance of permanent cationic and anionic groups, thus resulting in an overall zero charge. Also, the progress due to applying new methodologies from general polymer synthesis, such as controlled polymerization methods or the use of "click" chemical reactions is presented. Furthermore, the emerging topic of responsive ("smart") polyzwitterions is addressed. The considerations and critical discussions are illustrated by typical examples.}, language = {en} } @phdthesis{Kirchhecker2014, author = {Kirchhecker, Sarah}, title = {Renewable imidazolium zwitterions as platform molecules for the synthesis of ionic liquids and materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77412}, school = {Universit{\"a}t Potsdam}, pages = {136}, year = {2014}, abstract = {Following the principles of green chemistry, a simple and efficient synthesis of functionalised imidazolium zwitterionic compounds from renewable resources was developed based on a modified one-pot Debus-Radziszewski reaction. The combination of different carbohydrate-derived 1,2-dicarbonyl compounds and amino acids is a simple way to modulate the properties and introduce different functionalities. A representative compound was assessed as an acid catalyst, and converted into acidic ionic liquids by reaction with several strong acids. The reactivity of the double carboxylic functionality was explored by esterification with long and short chain alcohols, as well as functionalised amines, which led to the straightforward formation of surfactant-like molecules or bifunctional esters and amides. One of these di-esters is currently being investigated for the synthesis of poly(ionic liquids). The functionalisation of cellulose with one of the bifunctional esters was investigated and preliminary tests employing it for the functionalisation of filter papers were carried out successfully. The imidazolium zwitterions were converted into ionic liquids via hydrothermal decarboxylation in flow, a benign and scalable technique. This method provides access to imidazolium ionic liquids via a simple and sustainable methodology, whilst completely avoiding contamination with halide salts. Different ionic liquids can be generated depending on the functionality contained in the ImZw precursor. Two alanine-derived ionic liquids were assessed for their physicochemical properties and applications as solvents for the dissolution of cellulose and the Heck coupling.}, language = {en} } @misc{BaldKeller2014, author = {Bald, Ilko and Keller, Adrian}, title = {Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-47584}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475843}, pages = {13803 -- 13823}, year = {2014}, abstract = {DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.}, language = {en} } @misc{SchmidtBehlLendleinetal.2014, author = {Schmidt, Christian and Behl, Marc and Lendlein, Andreas and Bauermann, Sabine}, title = {Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99439}, year = {2014}, abstract = {Polyglycolide (PGA) is a biodegradable polymer with multiple applications in the medical sector. Here the synthesis of high molecular weight polyglycolide by ring-opening polymerization of diglycolide is reported. For the first time stabilizer free supercritical carbon dioxide (scCO2) was used as a reaction medium. scCO2 allowed for a reduction in reaction temperature compared to conventional processes. Together with the lowering of monomer concentration and consequently reduced heat generation compared to bulk reactions thermal decomposition of the product occurring already during polymerization is strongly reduced. The reaction temperatures and pressures were varied between 120 and 150 °C and 145 to 1400 bar. Tin(II) ethyl hexanoate and 1-dodecanol were used as catalyst and initiator, respectively. The highest number average molecular weight of 31 200 g mol-1 was obtained in 5 hours from polymerization at 120 °C and 530 bar. In all cases the products were obtained as a dry white powder. Remarkably, independent of molecular weight the melting temperatures were always at (219 ± 2) °C.}, language = {en} }