@article{DolyaRojasKosmellaetal.2013, author = {Dolya, Natalya and Rojas, Oscar and Kosmella, Sabine and Tiersch, Brigitte and Koetz, Joachim and Kudaibergenov, Sarkyt}, title = {"One-Pot" in situ frmation of Gold Nanoparticles within Poly(acrylamide) Hydrogels}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200727}, pages = {1114 -- 1121}, year = {2013}, abstract = {This paper focuses on two different strategies to incorporate gold nanoparticles (AuNPs) into the matrix of polyacrylamide (PAAm) hydrogels. Poly(ethyleneimine) (PEI) is used as both reducing and stabilizing agent for the formation of AuNPs. In addition, the influence of an ionic liquid (IL) (i.e., 1-ethyl-3-methylimidazolium ethylsulfate) on the stability of the nanoparticles and their immobilization in the hydrogel is investigated The results show that AuNPs surrounded by a shell containing PEI and IL, synthesized according to the one-pot approach, are much better immobilized within the PAAm hydrogel. Hereby, the IL is responsible for structural changes in the hydrogel as well as the improved stabilization and embedding of the AuNPs into the polymer gel matrix.}, language = {en} } @article{KleinpeterKoch2013, author = {Kleinpeter, Erich and Koch, Andreas}, title = {(Anti)aromaticity of dehydroannulenes of various ring size proved by the ring current effect in H-1 NMR spectra}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2012.12.019}, pages = {1481 -- 1488}, year = {2013}, abstract = {The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of already synthesized dehydro[n]annulenes of various ring size (from C-12 to C-20) have been computed, visualized as Isochemical Shielding Surfaces (ICSS) of various size and direction, and were examined subject to present (anti)aromaticity. For this purpose the thus quantified ring current effect of the macro cycles on proximate protons in proton NMR spectra was employed.}, language = {en} } @article{ShainyanKirpichenkoKleinpeteretal.2013, author = {Shainyan, Bagrat A. and Kirpichenko, Svetlana V. and Kleinpeter, Erich and Shlykov, Sergey A. and Osadchiy, Dmitriy Yu and Chipanina, Nina N. and Oznobikhina, Larisa P.}, title = {1,3-Dimethy1-3-silapiperidine - synthesis, molecular structure, and conformational analysis by gas-phase electron diffraction, low temperature NMR, IR and Raman Spectroscopy, and quantum chemical calculations}, series = {The journal of organic chemistry}, volume = {78}, journal = {The journal of organic chemistry}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo400289g}, pages = {3939 -- 3947}, year = {2013}, abstract = {The first Si-H-containing azasilaheterocycle, 1,3-dimethyl-3-silapiperidine 1, was synthesized, and its molecular structure and conformational properties were studied by gas-phase electron diffraction (GED), low temperature NMR, IR and Raman spectroscopy and quantum chemical calculations. The compound exists as a mixture of two conformers possessing the chair conformation with the equatorial NMe group and differing by axial or equatorial position of the SiMe group. In the gas phase, the SiMeax conformer predominates (GED: ax/eq = 65(7):35(7)\%,Delta G = 0.36(18) kcal/mol; IR: ax/eq = 62(5):38(5)\%,Delta G = 0.16(7) kcal/mol). In solution, at 143 k the SiMeeq conformer predominates' in the frozen equilibrium (NMR: ax/eq = 31.5(1.5):68.5(1.5)\%, Delta G = -0.22(2) kcal/mol). Thermodynamic parameters of the ring inversion are determined (Delta G(double dagger) = 8.9-9.0 kcal/mol, Delta H-double dagger = 9.6 kcal/mol, Delta S-double dagger = 2.1 eu). High-level quantum chemical calculations :(MP2, G2, CCSD(T)) nicely reproduce the experimental geometry and the predominance of the axial conformer in the gas phase.}, language = {en} } @article{SchmidtRiemerKarras2013, author = {Schmidt, Bernd and Riemer, Martin and Karras, Manfred}, title = {2,2 '-Biphenols via protecting group-free thermal or microwave-accelerated suzuki-miyaura coupling in water}, series = {The journal of organic chemistry}, volume = {78}, journal = {The journal of organic chemistry}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo401398n}, pages = {8680 -- 8688}, year = {2013}, abstract = {User-friendly protocols for the protecting group-free synthesis of 2,2'-biphenols via Suzuki-Miyaura coupling of o-halophenols and o-boronophenol are presented. The reactions proceed in water in the presence of simple additives such as K2CO3, KOH, KF, or TBAF and with commercially available Pd/C as precatalyst. Expensive or laboriously synthesized ligands or other additives are not required. In the case of bromophenols, efficient rate acceleration and short reaction times were accomplished by microwave irradiation.}, language = {en} } @article{DzambaskiMarkovicKleinpeteretal.2013, author = {Dzambaski, Zdravko and Markovic, Rade and Kleinpeter, Erich and Baranac-Stojanovic, Marija}, title = {2-Alkylidene-4-oxothiazolidine S-oxides - synthesis and stereochemistry}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {31}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2013.05.087}, pages = {6436 -- 6447}, year = {2013}, abstract = {A series of 5-unsubstituted and 5-substituted 2-alkylidene-4-oxothiazolidine-S-oxides were synthesized by the sulfur-oxidation with m-CPBA. The stereochemistry of 5-substituted sulfoxides was determined by means of NMR spectroscopy and DFT theoretical calculations. It was found that the thermodynamically less stable anti-isomer was initially formed in the course of the oxidation, but it underwent epimerization to the mixture enriched in the more stable syn-isomer, during the work-up process. The higher stability of syn-isomers is ascribed to the stronger hyperconjugative sigma(C-H)->sigma*(S-O) interaction versus the weaker sigma(C-C)->sigma*(S-O) delocalization in their anti-counterparts and to the existence of intramolecular 1,5-CH center dot center dot center dot C hydrogen bonds.}, language = {en} } @article{MutaiHeydenreichThoithietal.2013, author = {Mutai, Peggoty and Heydenreich, Matthias and Thoithi, Grace and Mugumbate, Grace and Chibale, Kelly and Yenesew, Abiy}, title = {3-Hydroxyisoflavanones from the stem bark of dalbergia melanoxylon - isolation, antimycobacterial evaluation and molecular docking studies}, series = {Phytochemistry letters}, volume = {6}, journal = {Phytochemistry letters}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2013.08.018}, pages = {671 -- 675}, year = {2013}, abstract = {Two new 3-hydroxyisoflavanones, (S)-3,4',5-trihydroxy-2',7-dimethoxy-3'-prenylisoflavanone (trivial name kenusanone F 7-methyl ether) and (S)-3,5-dihydroxy-2',7-dimethoxy-2 '',2 ''-dimethylpyrano[5 '',6 '':3',4']isoflavanone (trivial name sophoronol-7-methyl ether) along with two known compounds (dalbergin and formononetin) were isolated from the stem bark of Dalbergia melanoxylon. The structures were elucidated using spectroscopic techniques. Kenusanone F 7-methyl ether showed activity against Mycobacterium tuberculosis, whereas both of the new compounds were inactive against the malaria parasite Plasmodium falciparum at 10 mu g/ml. Docking studies showed that the new compounds kenusanone F 7-methyl ether and sophoronol-7-methyl ether have high affinity for the M. tuberculosis drug target INHA.}, language = {en} } @article{KramerKleinpeter2013, author = {Kramer, Markus and Kleinpeter, Erich}, title = {A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings}, issn = {1090-7807}, year = {2013}, language = {en} } @article{SchmidtBerger2013, author = {Schmidt, Bernd and Berger, Ren{\´e}}, title = {A deacetylation-diazotation-coupling sequence - palladium-catalyzed CC bond formation with acetanilides as formal leaving groups}, series = {Advanced synthesis \& catalysis}, volume = {355}, journal = {Advanced synthesis \& catalysis}, number = {2-3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1615-4150}, doi = {10.1002/adsc.201200929}, pages = {463 -- 476}, year = {2013}, abstract = {Acetanilides can be deacetylated and diazotized in situ, and subsequently used in Pd-catalyzed coupling reactions without isolation of the diazonium intermediate. Heck reactions, Suzuki cross-coupling reactions, and a Pd-catalyzed [2+2+1]cycloaddition have been investigated as terminating CC bond-forming steps of this one-flask sequence. The sequence does not require the exchange of solvents or removal of by-products between the individual steps, but proceeds by addition of reagents and catalysts in due course.}, language = {en} } @article{AstSchwarzeMuelleretal.2013, author = {Ast, Sandra and Schwarze, Thomas and M{\"u}ller, Holger and Sukhanov, Aleksey and Michaelis, Stefanie and Wegener, Joachim and Wolfbeis, Otto S. and K{\"o}rzd{\"o}rfer, Thomas and D{\"u}rkop, Axel and Holdt, Hans-J{\"u}rgen}, title = {A highly K+-Selective Phenylaza-[18]crown-6-Lariat-Ether-Based Fluoroionophore and its application in the sensing of K+ Ions with an optical sensor film and in cells}, series = {Chemistry - a European journal}, volume = {19}, journal = {Chemistry - a European journal}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201302350}, pages = {14911 -- 14917}, year = {2013}, abstract = {Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K+ ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18] crown-6 ether analogues. Probe 1 shows a high K+/Na+ selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100 mm K+ ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8\% per 1 mm K+ within the range 1-10 mm K+. The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K+ ions on both the extracellular and intracellular levels.}, language = {en} } @article{ThielZehbeRoesneretal.2013, author = {Thiel, Kerstin and Zehbe, Rolf and Roesner, Jer{\^o}m{\´e} and Strauch, Peter and Enthaler, Stephan and Thomas, Arne}, title = {A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks}, doi = {10.1039/C2PY20947K}, year = {2013}, abstract = {A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides.}, language = {en} } @article{ThielZehbeRoeseretal.2013, author = {Thiel, Kerstin and Zehbe, Rolf and R{\"o}ser, Jerome and Strauch, Peter and Enthaler, Stephan and Thomas, Arne}, title = {A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks}, series = {Polymer Chemistry}, volume = {4}, journal = {Polymer Chemistry}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20947k}, pages = {1848 -- 1856}, year = {2013}, abstract = {A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides.}, language = {en} } @misc{ThielZehbeRoeseretal.2013, author = {Thiel, Kerstin and Zehbe, Rolf and Roeser, Jer{\^o}m{\´e} and Strauch, Peter and Enthaler, Stephan and Thomas, Arne}, title = {A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95118}, pages = {1848 -- 1856}, year = {2013}, abstract = {A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides.}, language = {en} } @article{InalKoelschSelrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Selrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, doi = {10.1039/c3tb21245a}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @misc{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95336}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @misc{LiBabuTurneretal.2013, author = {Li, Hongguang and Babu, Sukumaran Santhosh and Turner, Sarah T. and Neher, Dieter and Hollamby, Martin J. and Seki, Tomohiro and Yagai, Shiki and Deguchi, Yonekazu and M{\"o}hwald, Helmuth and Nakanishi, Takashi}, title = {Alkylated-C60 based soft materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95358}, pages = {1943 -- 1951}, year = {2013}, abstract = {Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84 °C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 ± 0.1\%) in comparison with another compound, 10 (PCE: 0.5 ± 0.1\%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices.}, language = {en} } @article{LiBabuTurneretal.2013, author = {Li, Hongguang and Babu, Sukumaran Santhosh and Turner, Sarah T. and Neher, Dieter and Hollamby, Martin J. and Tomohito, Seki and Yagai, Shiki and deguchi, Yonekazu and M{\"o}hwald, Helmuth and Nakanishi, Takashi}, title = {Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching}, doi = {10.1039/C3TC00066D}, year = {2013}, abstract = {Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84°C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 {\~n} 0.1\%) in comparison with another compound, 10 (PCE: 0.5 {\~n} 0.1\%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices.}, language = {en} } @article{FischerSchmidtStrauchetal.2013, author = {Fischer, Sabrina and Schmidt, Johannes and Strauch, Peter and Thomas, Arne}, title = {An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {52}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {46}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201303045}, pages = {12174 -- 12178}, year = {2013}, language = {en} } @article{KeruboMidiwoDereseetal.2013, author = {Kerubo, Leonidah Omosa and Midiwo, Jacob Ogweno and Derese, Solomon and Langat, Moses K. and Akala, Hoseah M. and Waters, Norman C. and Peter, Martin and Heydenreich, Matthias}, title = {Antiplasmodial activity of compounds from the surface exudates of senecio roseiflorus}, series = {Natural product communications : an international journal for communications and reviews}, volume = {8}, journal = {Natural product communications : an international journal for communications and reviews}, number = {2}, publisher = {NPC}, address = {Westerville}, issn = {1934-578X}, pages = {175 -- 176}, year = {2013}, abstract = {From the surface exudates of Senecio roseiflorus fourteen known methylated flavonoids and one phenol were isolated and characterized. The structures of these compounds were determined on the basis of their spectroscopic analysis. The surface exudate and the flavonoids isolated showed moderate to good antiplasmodial activity with 5,4'-dihydroxy-7-dimethoxyflavanone having the highest activity against chloroquine-sensitive (D6) and resistant (W2) strains of Plasmodium falciparum, with IC50 values of 3.2 +/- 0.8 and 4.4 +/- 0.01 mu g/mL respectively.}, language = {en} } @article{Boese2013, author = {Boese, Adrian Daniel}, title = {Assessment of coupled cluster theory and more approximate methods for hydrogen bonded systems}, series = {Journal of chemical theory and computation}, volume = {9}, journal = {Journal of chemical theory and computation}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/ct400558w}, pages = {4403 -- 4413}, year = {2013}, abstract = {To assess the accuracy of post-Hartree-Fock methods like CCSD(T), MP3, MP2.5, MP2, SCS-MP2, SOS-MP2, and DFT-SAPT, we evaluated several effects going beyond valence-correlated CCSD(T). For 16 small hydrogen bonded systems, CCSD(T) achieves an RMS error of 0.17 kJ/mol in the dissociation energy compared to our best estimate, which is a composite method akin to W4 theory. The error of CCSD(T) is thus much lower than for atomization energies. MP2 is surprisingly accurate for these systems with an RMS error of 1.3 kJ/mol. MP2.5 yields a clear improvement over MP2 (RMS of 0.5 kJ/mol) but still has an error about 3 times as large as CCSD(T) for the absolute RMS and almost 10 times as large for the relative RMS. error. Neither SCS-MP2, SOS-MP2, nor DFT-SAPT yield lower errors than MP2. With a Delta CCSD(T) correction to MP2, the basis set limit is readily achieved when employing diffuse functions-without these, the convergence is rather slow.}, language = {en} } @article{SchmidtKrehlHauke2013, author = {Schmidt, Bernd and Krehl, Stefan and Hauke, Sylvia}, title = {Assisted tandem catalytic cross metathesis-oxidation in one flask from styrenes to 1,2-Diketones and further to quinoxalines}, series = {The journal of organic chemistry}, volume = {78}, journal = {The journal of organic chemistry}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo4005684}, pages = {5427 -- 5435}, year = {2013}, abstract = {1,2-Diketones were synthesized from styrenes by combining a cross metathesis and a Ru-catalyzed alkene oxidation to an assisted tandem catalytic sequence. The synthesis relies on the use of just one metathesis precatalyst, which was in situ converted to the oxidation catalyst by addition of an alkyl hydroperoxide as a chemical trigger and oxidant. The one-flask sequence can be extended beyond 1,2-diketones to quinoxalines, by condensation of the oxidation products with ortho-phenylenediamine.}, language = {en} }