@phdthesis{Latza2020, author = {Latza, Victoria Maria}, title = {Interactions involving lipid-based surfaces}, doi = {10.25932/publishup-44559}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445593}, school = {Universit{\"a}t Potsdam}, pages = {217}, year = {2020}, abstract = {Interactions involving biological interfaces such as lipid-based membranes are of paramount importance for all life processes. The same also applies to artificial interfaces to which biological matter is exposed, for example the surfaces of drug delivery systems or implants. This thesis deals with the two main types of interface interactions, namely (i) interactions between a single interface and the molecular components of the surrounding aqueous medium and (ii) interactions between two interfaces. Each type is investigated with regard to an important scientific problem in the fields of biotechnology and biology: 1.) The adsorption of proteins to surfaces functionalized with hydrophilic polymer brushes; a process of great biomedical relevance in context with harmful foreign-body-response to implants and drug delivery systems. 2.) The influence of glycolipids on the interaction between lipid membranes; a hitherto largely unexplored phenomenon with potentially great biological relevance. Both problems are addressed with the help of (quasi-)planar, lipid-based model surfaces in combination with x-ray and neutron scattering techniques which yield detailed structural insights into the interaction processes. Regarding the adsorption of proteins to brush-functionalized surfaces, the first scenario considered is the exposure of the surfaces to human blood serum containing a multitude of protein species. Significant blood protein adsorption was observed despite the functionalization, which is commonly believed to act as a protein repellent. The adsorption consists of two distinct modes, namely strong adsorption to the brush grafting surface and weak adsorption to the brush itself. The second aspect investigated was the fate of the brush-functionalized surfaces when exposed to aqueous media containing immune proteins (antibodies) against the brush polymer, an emerging problem in current biomedical applications. To this end, it was found that antibody binding cannot be prevented by variation of the brush grafting density or the polymer length. This result motivates the search for alternative, strictly non-antigenic brush chemistries. With respect to the influence of glycolipids on the interaction between lipid membranes, this thesis focused on the glycolipids' ability to crosslink and thereby to tightly attract adjacent membranes. This adherence is due to preferential saccharide-saccharide interactions occurring among the glycolipid headgroups. This phenomenon had previously been described for lipids with special oligo-saccharide motifs. Here, it was investigated how common this phenomenon is among glycolipids with a variety of more abundant saccharide-headgroups. It was found that glycolipid-induced membrane crosslinking is equally observed for some of these abundant glycolipid types, strongly suggesting that this under-explored phenomenon is potentially of great biological relevance.}, language = {en} } @article{PerezAnesRodriguesCaminadeetal.2015, author = {Perez-Anes, Alexandra and Rodrigues, Fernanda and Caminade, Anne-Marie and Stefaniu, Cristina and Tiersch, Brigitte and Turrin, Cedric-Olivier and Blanzat, Muriel}, title = {Influence of structural parameters on the self-association properties of anti-HIV catanionic dendrimers}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {16}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201500484}, pages = {3433 -- 3437}, year = {2015}, abstract = {The self-association properties of anti-HIV catanionic dendrimers as multivalent galactosylceramide (GalCer)-derived inhibitors are presented. The study was designed to elucidate the origin of the relatively high cytotoxicity values of these antiHIV catanionic dendrimers, which have previously been found to exhibit in vitro anti-HIV activity in the submicromolar range. The physicochemical properties of these catanionic dendrimers were studied to tentatively correlate the structural parameters with self-association and biological properties. We can conclude from this study that the absence of correlation between the hydrophobicity and the cytotoxicity of the catanionic systems could be explained by the partial segregation of the different partners of the catanionic entities.}, language = {en} }