@article{BelasriTopalHeydenreichetal.2020, author = {Belasri, Khadija and Topal, Leila and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich and Fulop, Ferenc and Szatmari, Istvan}, title = {Synthesis and conformational analysis of naphthoxazine-fused phenanthrene derivatives}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules25112524}, pages = {15}, year = {2020}, abstract = {The synthesis of new phenanthr[9,10-e][1,3]oxazines was achieved by the direct coupling of 9-phenanthrol with cyclic imines in the modified aza-Friedel-Crafts reaction followed by the ring closure of the resulting bifunctional aminophenanthrols with formaldehyde. Aminophenanthrol-type Mannich bases were synthesised and transformed to phenanthr[9,10-e][1,3]oxazines via [4 + 2] cycloaddition. Detailed NMR structural analyses of the new polyheterocycles as well as conformational studies including Density Functional Theory (DFT) modelling were performed. The relative stability of ortho-quinone methides (o-QMs) was calculated, the geometries obtained were compared with the experimentally determined NMR structures, and thereby, the regioselectivity of the reactions has been assigned.}, language = {en} } @article{KochStamboliyskaMikhovaetal.2019, author = {Koch, Andreas and Stamboliyska, Bistra and Mikhova, Bozhana and Breznica-Selmani, Pranvera and Mladenovska, Kristina and Popovski, Emil}, title = {Calculations of C-13 NMR chemical shifts and F-C coupling constants of ciprofloxacin}, series = {Magnetic resonance in chemistry}, volume = {57}, journal = {Magnetic resonance in chemistry}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4827}, pages = {75 -- 84}, year = {2019}, abstract = {Ciprofloxacin is a widely used fluoroquinolone antibiotic. In this work, a comprehensive evaluation of MP2 and DFT with different functionals and basis sets was carried out to select the most suitable level of theory for the study of the NMR properties of ciprofloxacin. Their relative predictive capabilities were evaluated comparing the theoretically predicted and experimental spectral data. Our computational results indicated that in contrast to the solid state, the molecule of ciprofloxacin does not exist as a zwitterion in gaseous state. The results of the calculations of the chemical shifts most close to the experimental were obtained with B3LYP/aug-cc-pVDZ. The F-C coupling constants were calculated systematically with different DFT methods and several basis sets. In general, the calculations of the coupling constants with the BHandH computational method including the applied in this work 6-311++G**, EPRII, and EPRIII basis sets showed a good reproducibility of the experimental values of the coupling constants.}, language = {en} } @article{SzatmariBelasriHeydenreichetal.2019, author = {Szatmari, Istvan and Belasri, Khadija and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich and Fulop, Ferenc}, title = {Ortho-Quinone methide driven synthesis of new O,N- or N,N-Heterocycles}, series = {ChemistryOpen : including thesis treasury}, volume = {8}, journal = {ChemistryOpen : including thesis treasury}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201900150}, pages = {961 -- 971}, year = {2019}, abstract = {To synthesize functionalized Mannich bases that can serve two different types of ortho-quinone methide (o-QM) intermediates, 2-naphthol and 6-hydroxyquinoline were reacted with salicylic aldehyde in the presence of morpholine. The Mannich bases that can form o-QM and aza-o-QM were also synthesized by mixing 2-naphthol, 2-nitrobenzaldehyde, and morpholine followed by reduction of the nitro group. The highly functionalized aminonaphthol derivatives were then tested in [4+2] cycloaddition with different cyclic imines. The reaction proved to be both regio- and diastereoselective. In all cases, only one reaction product was obtained. Detailed structural analyses of the new polyheterocycles as well as conformational studies including DFT modelling were performed. The relative stability of o-QMs/aza-o-QM were also calculated, and the regioselectivity of the reactions could be explained only when the cycloaddition started from aminodiol 4. It was summarized that starting from diaminonaphthol 25, the regioselectivity of the reaction is driven by the higher nucleophilicity of the amino group compared with the hydroxy group. 12H-benzo[a]xanthen-12-one (11), formed via o-QM formation, was isolated as a side product. The proton NMR spectrum of 11 proved to be very unique from NMR point of view. The reason for the extreme low-field position of proton H-1 could be accounted for by theoretical calculation of structure and spatial magnetic properties of the compound in combination of ring current effects of the aromatic moieties and steric compression within the heavily hindered H(1)-C(1)-C(12b)-C(12a)-C(12)=O structural fragment.}, language = {en} } @article{CsuetoertoekiSzatmariKochetal.2011, author = {Csuetoertoeki, Renata and Szatmari, Istvan and Koch, Andreas and Heydenreich, Matthias and Kleinpeter, Erich and Fueloep, Ferenc}, title = {Synthesis and conformational analysis of new naphth[1,2-e][1,3]oxazino[3,4-c]quinazoline derivatives}, series = {Tetrahedron}, volume = {67}, journal = {Tetrahedron}, number = {44}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2011.08.074}, pages = {8564 -- 8571}, year = {2011}, abstract = {A new highly functionalized aminonaphthol derivative, 1-(amino(2-aminophenyl)methyl)-2-naphthol (4), was synthesized by the reaction of 2-naphthol, 2-nitrobenzaldehyde and tert-butyl carbamate or benzyl carbamate, followed by reduction and/or removal of the protecting group. The aminonaphthol derivative thus obtained was converted in ring-closure reactions with formaldehyde. benzaldehyde and/or phosgene to the corresponding naphth[1,2-e][1,3]oxazino[3,4-c]quinazoline derivatives. The conformational analysis of some derivatives by NMR spectroscopy and accompanying molecular modelling are also reported.}, language = {en} } @article{SzatmariHeydenreichKochetal.2013, author = {Szatmari, Istvan and Heydenreich, Matthias and Koch, Andreas and Fulop, Ferenc and Kleinpeter, Erich}, title = {Unexpected isomerization of new naphth[1,3]oxazino[2,3-a] isoquinolines in solution, studied by dynamic NMR and supported by theoretical DFT computations}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {35}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2013.06.094}, pages = {7455 -- 7465}, year = {2013}, abstract = {Through the reactions of 1-aminomethyl-2-naphthol and substituted 1-aminobenzyl-2-naphthols with 3,4-dihydroisoquinoline or 6,7-dimethoxy-3,4-dihydroisoquinoline under microwave conditions, naphth[1,2-e][1,3]oxazino[2,3-a]-isoquinoline derivatives were prepared in good yields. The latter reaction was extended by using 2-aminoarylmethyl-1-naphthols, leading to isomeric naphth-[2,1-e][1,3]oxazino[2,3-a] isoquinolines. Beside the detailed NMR spectroscopic and theoretical study of both stereochemistry and dynamic behaviour of these new conformational flexible heterocyclic ring systems an unexpected dynamic process between two diastereomers was observed in solution, studied by variable temperature H-1 NMR spectroscopy and the mechanism proved by theoretical DFT computations.}, language = {en} }