@article{ShainyanKirpichenkoKleinpeter2012, author = {Shainyan, Bagrat A. and Kirpichenko, Svetlana V. and Kleinpeter, Erich}, title = {Synthesis and conformational properties of 1,3-dimethyl-3-phenyl-1,3-azasilinane low temperature dynamic NMR and computational study}, series = {Arkivoc : free online journal of organic chemistry}, journal = {Arkivoc : free online journal of organic chemistry}, number = {24}, publisher = {ARKAT}, address = {Gainesville}, issn = {1551-7004}, pages = {175 -- 185}, year = {2012}, abstract = {1,3-Dimethyl-3-phenyl-1,3-azasilinane was synthesized and its conformational behavior was studied by the low temperature NMR spectroscopy and quantum chemical calculations. The compound was shown to exist as an equilibrium mixture of the PhaxMeeq and PheqMeax chair conformers with the N-methyl substituent in equatorial position. The barrier to ring inversion was also determined.}, language = {en} } @article{KleinpeterHeydenreichKochetal.2017, author = {Kleinpeter, Erich and Heydenreich, Matthias and Koch, Andreas and Krtitschka, Angela and Kr{\"u}ger, Tobias and Linker, Torsten}, title = {NMR spectroscopic conformational analysis of 4-methylene-cyclohexyl pivalateThe effect of sp(2) hybridization}, series = {Magnetic resonance in chemistry}, volume = {55}, journal = {Magnetic resonance in chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4630}, pages = {1073 -- 1078}, year = {2017}, abstract = {The conformational equilibrium of the axial/equatorial conformers of 4-methylene-cyclohexyl pivalate is studied by dynamic NMR spectroscopy in a methylene chloride/freon mixture. At 153K, the ring interconversion gets slow on the nuclear magnetic resonance timescale, the conformational equilibrium (-G degrees) can be examined, and the barrier to ring interconversion (G(\#)) can be determined. The structural influence of sp(2) hybridization on both G degrees and G(\#) of the cyclohexyl moiety can be quantified.}, language = {en} } @article{ShainyanSuslovaKleinpeter2011, author = {Shainyan, Bagrat A. and Suslova, Elena N. and Kleinpeter, Erich}, title = {Conformational analysis of N-phenyl- and N-trifyl-4,4-dimethyl-4-silathiane 1-sulfimides}, series = {Journal of physical organic chemistry}, volume = {24}, journal = {Journal of physical organic chemistry}, number = {8}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0894-3230}, doi = {10.1002/poc.1811}, pages = {698 -- 704}, year = {2011}, abstract = {N-Substituted 4,4-dimethyl-4-silathiane 1-sulfimides Me2Si(sic)S=NSO2R [R- Ph (1), CF3 (2)] were studied experimentally by variable temperature dynamic NMR spectroscopy. Low temperature 13 C NMR spectra of the two compounds revealed the frozen ring inversion process and approximately equal content of the axial and equatorial conformers. Calculations of the 4-silathiane derivatives 1, 2 and the model compound [R Me (3)] as well as their carbon analogs, the similarly N-substituted (sic)S=NSO2R thiane 1-sulfimides [R = Ph (4), CF3 (5), Me (6)] at the DFT/B3LYP/6-311G(d, p) level in the gas phase and in chloroform solution using the PCM model at the same level of theory showed a strong dependence of the relative stability of the conformer on the solvent. The electronegative trifluoromethyl group increases the relative stability of the axial conformer.}, language = {en} } @article{ShainyanSuslovaKleinpeter2012, author = {Shainyan, Bagrat A. and Suslova, Elena N. and Kleinpeter, Erich}, title = {Conformational analysis of 4,4-dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane}, series = {Journal of physical organic chemistry}, volume = {25}, journal = {Journal of physical organic chemistry}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.1882}, pages = {83 -- 90}, year = {2012}, abstract = {4,4-Dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane 1 and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Moller-Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed inward and outward the ring, the latter being 0.20.4 kcal/mol (for 1) and 1.1 kcal/mol (for 2) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference Delta G degrees for the 'inward' reversible arrow 'outward' equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X-ray diffraction analysis.}, language = {en} } @article{KirpichenkoKleinpeterUshakovetal.2011, author = {Kirpichenko, Svetlana V. and Kleinpeter, Erich and Ushakov, Igor A. and Shainyan, Bagrat A.}, title = {Conformational Analysis of 3-Methyl-3-Silathiane and 3-Fluoro-3-Methyl-3-Silathiane}, series = {Journal of physical organic chemistry}, volume = {24}, journal = {Journal of physical organic chemistry}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.1758}, pages = {320 -- 326}, year = {2011}, abstract = {The conformational equilibria of 3-methyl-3-silathiane 5, 3-fluoro-3-methyl-3-silathiane 6 and 1-fluoro-1-methyl-1- silacyclohexane 7 have been studied using low temperature C-13 NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5(ax):5(eq) - 15:85, 6(ax):6(eq)-50:50 and 7(ax):7(eq)-25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol(-1)) is much less than in 3-methylthiane 9 (1.40 kcal mol(-1)) but somewhat greater than in 1-methyl-1-silacyclohexane 1 (0.23 kcal mol(-1)). Compounds 5-7 have low barriers to ring inversion: 5.65 (ax -> eq) and 6.0 kcal mol(-1) (eq -> ax) (5), 4.6 kcal mol(-1) (6), 5.1 kcal mol(-1) (Me-ax -> Me-eq), and 5.4 kcal mol(-1) (Me-eq -> Me-ax) (7). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6, or different conformer ratio for 5 and 7. Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si-X and adjacent C-H, C-S, and C-C bonds proved responsible.}, language = {en} }