@article{FriessLendleinWischke2014, author = {Friess, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Photoinduced synthesis of polyester networks from methacrylate functionalized precursors: analysis of side reactions}, series = {Polymers for advanced technologies}, volume = {25}, journal = {Polymers for advanced technologies}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3313}, pages = {1285 -- 1292}, year = {2014}, abstract = {Polyester networks can be prepared by ultraviolet (UV)-light-induced radical polymerization of methacrylate functionalized oligo(epsilon-caprolactone)s. The properties and functions of the obtained materials depend on defined network structures and may be altered, if crosslinking would occur by side reactions in other positions than the methacrylate endgroups. In order to explore whether and to which extent such side reactions occur, network synthesis as well as related model reactions were performed in the absence of photoinitiator. Hereby precursor structures (linear and four-arm star-shaped) and reaction conditions (in solution and in the melt) were varied. Unspecific side reactions were found only upon extensive UV irradiation for 60min (26 mW cm(-2)) with minor but detectable alterations of physicochemical properties of the networks. The analysis of model reactions suggested minor photolytic cleavage of ester bonds during polymer network synthesis. However, the effect of these side reactions on network properties and functions appeared to be less relevant than an incomplete precursor integration because of a too short UV irradiation for crosslinking. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} }