@article{HerfurthVollBulleretal.2012, author = {Herfurth, Christoph and Voll, Dominik and Buller, Jens and Weiss, Jan and Barner-Kowollik, Christopher and Laschewsky, Andr{\´e}}, title = {Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (meth)acrylates}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {50}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0887-624X}, doi = {10.1002/pola.24994}, pages = {108 -- 118}, year = {2012}, abstract = {We report on the controlled free radical homopolymerization of 1-ferrocenylethyl acrylate as well as of three new ferrocene bearing monomers, namely 4-ferrocenylbutyl acrylate, 2-ferrocenylamido-2-methylpropyl acrylate, and 4-ferrocenylbutyl methacrylate, by the RAFT technique. For comparison, the latter monomer was polymerized using ATRP, too. The ferrocene containing monomers were found to be less reactive than their analogues free of ferrocene. The reasons for the low polymerizability are not entirely clear. As the addition of free ferrocene to the reaction mixture did not notably affect the polymerizations, sterical hindrance by the bulky ferrocene moiety fixed on the monomers seems to be the most probable explanation. Molar masses found for 1-ferrocenylethyl acrylate did not exceed 10,000 g mol(-1), while for 4-ferrocenylbutyl (meth) acrylate molar masses of 15,000 g mol(-1) could be obtained. With PDIs as low as 1.3 in RAFT polymerization of the monomers, good control over the polymerization was achieved.}, language = {en} }