@article{HahnHoldt2012, author = {Hahn, Simone and Holdt, Hans-J{\"u}rgen}, title = {Extraction of hexachloroplatinate from hydrochloric acid solutions with phosphorylated hexane-1,6-diyl polymers}, series = {Reactive \& functional polymers}, volume = {72}, journal = {Reactive \& functional polymers}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1381-5148}, doi = {10.1016/j.reactfunctpolym.2012.08.004}, pages = {878 -- 888}, year = {2012}, abstract = {A series of diols (diethylene glycol, triethylene glycol, butane-1,4-diol and hexane-1,6-diol) were immobilized onto Merrifield resin and subsequently phosphorylated with dialkyl chlorophosphate (alkyl = Me, Et, Bu). The resins bearing hexane-1,6-diyl groups exhibited very good extraction abilities in regard to precious metal chloro complexes like platinum(IV), palladium(II) and rhodium(III). In batch experiments, more than 98\% of Pt(IV) is extracted even when the metal and the hydrochloric acid concentration is enhanced significantly. Elution can be achieved with a solution of 0.5 mol L-1 thiourea in 0.1 mol L-1 hydrochloric acid. In the presence of other noble metals, platinum(IV) is preferentially bound. The extraction yield decreases in slightly acidic solution in the following order: Pt(IV)approximate to Pd(II)>Rh(III) and changes with increasing hydrochloric acid concentration to Pt(IV)>Pd(II)>> Rh(III). At different ratios of metal and acid, the temperature has nearly no influence on the platinum extraction. On slightly acidic media, the extraction of rhodium decreases by 30\% when the temperature is increased from 10 degrees C to 40 degrees C. When the acid and metal concentration is enhanced, the palladium extraction decreases by 7-9\%, depending on the resin.}, language = {en} }