@article{WessigKrebs2021, author = {Wessig, Pablo and Krebs, Saskia}, title = {N-aroylsulfonamide-photofragmentation (ASAP)}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {46}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202100955}, pages = {6367 -- 6374}, year = {2021}, abstract = {The photochemical fragmentation of N-aroylsulfonamides 9 (ASAP) is a powerful method for the preparation of various biaryls. Compounds 9 are easily accessible in two steps from amines by treatment with arenesulfonyl chlorides and aroyl chlorides. Many of these compounds were prepared for the first time. The irradiation takes place in a previously developed continuous-flow reactor using inexpensive UVB or UVC fluorescent lamps. Isocyanates and sulphur dioxide are formed as the only by-products. The ASAP tolerates a variety of functional groups and is even suited for the preparation of phenylnaphthalenes and terphenyls. The ASAP mechanism was elucidated by interaction of photophysical and quantum chemical (DFT) methods and revealed a spirocyclic biradical as key intermediate.}, language = {en} } @article{StorchMaierWessigetal.2016, author = {Storch, Golo and Maier, Frank and Wessig, Pablo and Trapp, Oliver}, title = {Rotational Barriers of Substituted BIPHEP Ligands: A Comparative Experimental and Theoretical Study}, series = {European journal of organic chemistry}, volume = {22}, journal = {European journal of organic chemistry}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201600836}, pages = {5123 -- 5126}, year = {2016}, abstract = {The interconversion barriers of 14 different 3,3- and 5,5-disubstituted tropos BIPHEP [2,2-bis(diphenylphosphino)-1,1-biphenyl] and BIPHEP(O) [2,2-bis(diphenylphosphoryl)-1,1-biphenyl] ligands were investigated by enantioselective dynamic high performance liquid chromatography (DHPLC) and DFT calculations using the B3LYP/6-31G* and M06-2X/6-31G* levels of theory. The experimentally determined enantiomerization barriers varied from 86.8 to 101.4 kJmol(-1) and were found to be in excellent agreement with the calculated data. The root-mean-square deviations are 7.3 kJmol(-1) for the B3LYP functional and 11.3 kJmol(-1) for the M06-2X method.}, language = {en} } @article{SchmidtRiemer2015, author = {Schmidt, Bernd and Riemer, Martin}, title = {Synthesis of Magnaldehydes B and E and Dictyobiphenyl B by Microwave-Promoted Cross-Coupling of Boronophenols}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {17}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201500350}, pages = {3760 -- 3766}, year = {2015}, abstract = {Magnaldehydes B and E along with their 4'-methylated derivatives are naturally occurring 2,4'-biphenols that have been isolated from the Magnoliaceae. Herein, these natural products have been synthesized from a common intermediate, which was obtained by a microwave-promoted, hetero-geneously catalyzed, and protecting-group-free Suzuki-Miyaura coupling reaction in an aqueous medium. These reaction conditions were also successfully applied to a one-step synthesis of the slime mold metabolite dictyobiphenyl B.}, language = {en} } @article{WessigPickSchilde2011, author = {Wessig, Pablo and Pick, Charlotte and Schilde, Uwe}, title = {First example of an atropselective dehydro-Diels-Alder (ADDA) reaction}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.06.024}, pages = {4221 -- 4223}, year = {2011}, abstract = {A new concept of a stereoselective synthesis of axially chiral biaryls, formed in the course of the dehydro-Diels-Alder (DDA) reaction, has been disclosed. It is based on asymmetric induction of the newly formed chirality axis by a chirality center, which is present in the two synthesized DDA reactants. Depending on the different length of the linkers joining the alkyne moieties the DDA reaction may be triggered photochemically or thermally, where only the thermal variant was stereoselective.}, language = {en} }