@article{MaticHessSchanzenbachetal.2020, author = {Matic, Aleksandar and Hess, Andreas and Schanzenbach, Dirk and Schlaad, Helmut}, title = {Epoxidized 1,4-polymyrcene}, series = {Polymer chemistry}, volume = {11}, journal = {Polymer chemistry}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c9py01783f}, pages = {1364 -- 1368}, year = {2020}, abstract = {1,4-Polymyrcene was synthesized by anionic polymerization and epoxidized using meta-chloroperbenzoic acid. Samples with different degrees of epoxidation (25\%, 49\%, 74\%, and 98\%) were prepared and examined according to their chemical and thermal properties. Epoxidation was found to increase the glass transition temperature (T-g = 14 degrees C for the 98\% epoxidized 1,4-polymyrcene) as well as the shelf live (>10 months). The trisubstituted epoxide groups were remarkably stable against nucleophiles under basic conditions but cross-linked or hydrolyzed in the presence of an acid. Also, highly epoxidized 1,4-polymyrcene readily cross-linked upon annealing at 260 degrees C to produce an epoxy resin.}, language = {en} } @article{KeckeisZellerJungetal.2021, author = {Keckeis, Philipp and Zeller, Enriko and Jung, Carina and Besirske, Patricia and Kirner, Felizitas and Ruiz-Agudo, Cristina and Schlaad, Helmut and C{\"o}lfen, Helmut}, title = {Modular toolkit of multifunctional block copoly(2-oxazoline)s for the synthesis of nanoparticles}, series = {Chemistry - a European journal}, volume = {27}, journal = {Chemistry - a European journal}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202101327}, pages = {8283 -- 8287}, year = {2021}, abstract = {Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles.}, language = {en} }