@article{SchulzePrietzelKoetz2016, author = {Schulze, Nicole and Prietzel, Claudia Christina and Koetz, Joachim}, title = {Polyampholyte-mediated synthesis of anisotropic gold nanoplatelets}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {294}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-016-3890-y}, pages = {1297 -- 1304}, year = {2016}, abstract = {This paper focused on the synthesis of triangular nanoplatelets in the presence of a tubular network structure. The tubular network structure is formed by adding a strongly alternating polyampholyte, i.e., PalPhBisCarb, to a mixed vesicle system with a negatively charged bilayer containing phosphatidylcholin and AOT. Using the tubular network as a reducing agent in a one-step procedure, triangular and hexagonal nanoplatelets are formed. One can show that the nanoplatelet yield is enhanced by increasing the temperature and decreasing the reaction time. The platelet edge length can be decreased by heating the system up to 100 A degrees C. Due to specific interactions between PalPhBisCarb and the AOT/phospholipid bilayer, stacking and welding effects lead to the formation of ordered platelet structures. The reaction pathway to flat gold nanotriangles is discussed with regard to the twin plane growth model of gold nanoplates.}, language = {en} }