@article{EisoldSellrieSchenketal.2015, author = {Eisold, Ursula and Sellrie, Frank and Schenk, J{\"o}rg A. and Lenz, Christine and St{\"o}cklein, Walter F. M. and Kumke, Michael Uwe}, title = {Bright or dark immune complexes of anti-TAMRA antibodies for adapted fluorescence-based bioanalysis}, series = {Analytical \& bioanalytical chemistry}, volume = {407}, journal = {Analytical \& bioanalytical chemistry}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-015-8538-0}, pages = {3313 -- 3323}, year = {2015}, abstract = {Fluorescence labels, for example fluorescein or rhodamin derivatives, are widely used in bioanalysis applications including lateral-flow assays, PCR, and fluorescence microscopy. Depending on the layout of the particular application, fluorescence quenching or enhancement may be desired as the detection principle. Especially for multiplexed applications or high-brightness requirements, a tunable fluorescence probe can be beneficial. The alterations in the photophysics of rhodamine derivatives upon binding to two different anti-TAMRA antibodies were investigated by absorption and fluorescence-spectroscopy techniques, especially determining the fluorescence decay time and steady-state and time-resolved fluorescence anisotropy. Two monoclonal anti-TAMRA antibodies were generated by the hybridoma technique. Although surface-plasmon-resonance measurements clearly proved the high affinity of both antibodies towards 5-TAMRA, the observed effects on the fluorescence of rhodamine derivatives were very different. Depending on the anti-TAMRA antibody either a strong fluorescence quenching (G71-DC7) or a distinct fluorescence enhancement (G71-BE11) upon formation of the immune complex was observed. Additional rhodamine derivatives were used to gain further information on the binding interaction. The data reveal that such haptens as 5-TAMRA could generate different paratopes with equal binding affinities but different binding interactions, which provide the opportunity to adapt bioanalysis methods including immunoassays for optimized detection principles for the same hapten depending on the specific requirements.}, language = {en} } @article{HoangMertensWessigetal.2018, author = {Hoang, Hoa T. and Mertens, Monique and Wessig, Pablo and Sellrie, Frank and Schenk, J{\"o}rg A. and Kumke, Michael Uwe}, title = {Antibody Binding at the Liposome-Water Interface}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.8b03016}, pages = {18109 -- 18116}, year = {2018}, abstract = {Different signal amplification strategies to improve the detection sensitivity of immunoassays have been applied which utilize enzymatic reactions, nanomaterials, or liposomes. The latter are very attractive materials for signal amplification because liposomes can be loaded with a large amount of signaling molecules, leading to a high sensitivity. In addition, liposomes can be used as a cell-like "bioscaffold" to directly test recognition schemes aiming at cell-related processes. This study demonstrates an easy and fast approach to link the novel hydrophobic optical probe based on [1,3]dioxolo[4,5-f]-[1,3]benzodioxole (DBD dye mm239) with tunable optical properties to hydrophilic recognition elements (e.g., antibodies) using liposomes for signal amplification and as carrier of the hydrophobic dye. The fluorescence properties of mm239 (e.g., long fluorescence lifetime, large Stokes shift, high photostability, and high quantum yield), its high hydrophobicity for efficient anchoring in liposomes, and a maleimide bioreactive group were applied in a unique combination to build a concept for the coupling of antibodies or other protein markers to liposomes (coupling to membranes can be envisaged). The concept further allowed us to avoid multiple dye labeling of the antibody. Here, anti-TAMRA-antibody (DC7-Ab) was attached to the liposomes. In proof-of-concept, steady-state as well as time-resolved fluorescence measurements (e.g., fluorescence depolarization) in combination with single molecule detection (fluorescence correlation spectroscopy, FCS) were used to analyze the binding interaction between DC7-Ab and liposomes as well as the binding of the antigen rhodamine 6G (R6G) to the antibody. Here, the Forster resonance energy transfer (FRET) between mm239 and R6G was monitored. In addition to ensemble FRET data, single-molecule FRET (PIE-FRET) experiments using pulsed interleaved excitation were used to characterize in detail the binding on a single-molecule level to avoid averaging out effects.}, language = {en} }