@article{ZehmLaschewskyGradzielskietal.2010, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Gradzielski, Michael and Pr{\´e}vost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Schweins, Ralf and Gummel, J{\´e}r{\´e}mie}, title = {Amphiphilic dual brush block copolymers as "giant surfactants" and their aqueous self-assembly}, issn = {0743-7463}, doi = {10.1021/La903087p}, year = {2010}, abstract = {Amphiphilic dual brush diblock as well as symmetrical triblock polymers were synthesized by the overlay of the reversible addition-fragmentation chain transfer and the nitroxide mediated polymerization (NMP) techniques. While poly(ethylene glycol) brushes served as hydrophilic block, the hydrophobic block was made of polystyrene brushes. The resulting "giant surfactants" correspond structurally to the established amphiphilic diblock and triblock copolymer known as macrosurfactants. The aggregation behavior of the novel "giant surfactants" in aqueous solution was studied by dynamic light scattering, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) over a large range in reciprocal space. Further, the self-assembled aggregates Were investigated by scanning force microscopy (SFM) after deposition on differently functionalized ultraflat solid substrates. Despite the high fraction of hydrophobic segments, the polymers form stable mesoscopic, spherical aggregates with hydrodynamic diameters in the range of 150-350 nm. Though prepared from well-defined individual polymers, the aggregates show several similarities to hard core latexes. They are stable enough to he deposited without much changes onto surfaces, where they cluster and show Spontaneous sorting according to their size within the clusters, with the larger aggregates being in the center.}, language = {en} } @article{CarlMuellerSchweinsetal.2020, author = {Carl, Nico and M{\"u}ller, Wenke and Schweins, Ralf and Huber, Klaus}, title = {Controlling self-assembly with light and temperature}, series = {Langmuir}, volume = {36}, journal = {Langmuir}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.9b03040}, pages = {223 -- 231}, year = {2020}, abstract = {Complexes between the anionic polyelectrolyte sodium polyacrylate (PA) and an oppositely charged divalent azobenzene dye are prepared in aqueous solution. Depending on the ratio between dye and polyelectrolyte stable aggregates with a well-defined spherical shape are observed. Upon exposure of these complexes to UV light, the trans -> cis transition of the azobenzene is excited resulting in a better solubility of the dye and a dissolution of the complexes. The PA chains reassemble into well-defined aggregates when the dye is allowed to relax back into the trans isomer. Varying the temperature during this reformation step has a direct influence on the final size of the aggregates rendering temperature in an efficient way to easily change the size of the self-assemblies. Application of time-resolved small-angle neutron scattering (SANS) to study the structure formation reveals that the cis -> trans isomerization is the rate-limiting step followed by a nucleation and growth process.}, language = {en} }