@article{GlinelMoussaJonasetal.2002, author = {Glinel, Karine and Moussa, Alain and Jonas, Alain M. and Laschewsky, Andr{\´e}}, title = {The influence of polyelectrolyte charge density on the formation of multilayers of strong polyelectrolytes at low ionic strength}, year = {2002}, abstract = {The influence of the charge density of polyelectrolytes on the growth of polyelectrolyte multilayers via layer- by-layer self-assembly from pure aqueous solutions was studied. Multilayers were built from strong polyanions, namely poly(styrenesulfonate) and an exfoliated synthetic hectorite, and cationic copolymers of diallyldimethylammonium chloride (DADMAC) with N-methyl-N-vinylformamide (NMVF) for which the composition and thus the charge density was varied systematically. The analysis of the system {cationic copolymer/poly(styrenesulfonate)} reveals that a critical linear charge density {\"I}c of 0.036 elementary charge/{\AA} of contour length is necessary to obtain stable multilayer growth in pure water. Above {\"I}c, the increment of thickness/deposition cycle varies with the linear charge density of the cationic copolymers, in good agreement with current theories of polyelectrolyte solutions. As linear charge density increases, the system passes successively through a charge-dependent ?Debye-Hu ckel? regime and then through a chargeindependent ?strong-screening? regime where counterion condensation dominates the behavior. Analogous results were obtained for the variation of the basal spacing of internally structured hybrid multilayers {cationic copolymer/hectorite}. However, by contrast with the first system, no critical linear charge density was found for the hybrid system. This is explained by additional, nonelectrostatic interactions between the clay platelets and the formamide fragment.}, language = {en} } @article{RullensVuillaumeMoussaetal.2006, author = {Rullens, F and Vuillaume, Pascal Y. and Moussa, Alain and Habib-Jiwan, Jean-Louis and Laschewsky, Andr{\´e}}, title = {Ordered polyelectrolyte "Multilayers". 7. Hybrid films self-assembled from fluorescent and smectogenic poly(diallylammonium) salts and delaminated clay}, doi = {10.1021/Cm060209x}, year = {2006}, abstract = {Homopolymers were prepared from diallylammonium monomers bearing 4-methylcoumarin and 4-cyanobiphenyl as fluorescent and mesogenic side groups, as well as their copolymers with diallyldimethylammonium chloride (DADMAC). Organic-inorganic hybrid films were electrostatically self-assembled via the layer-by-layer technique on silicon wafers and quartz plates from the chromophore-bearing polymers and an exfoliated synthetic hectorite. Photophysical studies performed in solution as well as in the self-assembled films demonstrated only a weak tendency for aggregation of the chromophores in the macromolecules. Moreover, assemblies made from the polymers carrying the cyanobiphenyl mesogen were found to exhibit a pronounced internal order}, language = {en} } @article{WattebledLaschewskyMoussaetal.2006, author = {Wattebled, Laurent and Laschewsky, Andr{\´e} and Moussa, Alain and Habib-Jiwan, Jean-Louis}, title = {Aggregation numbers of cationic oligomeric surfactants : A time-resolved fluorescence quenching study}, doi = {10.1021/La052414h}, year = {2006}, abstract = {The micelle aggregation numbers (N-agg) of several series of cationic oligomeric surfactants were determined by time-resolved fluorescence quenching (TRFQ) experiments, using advantageously 9,10-dimethylanthracene as fluorophore. The study comprises six dimeric ("gemini"), three trimeric, and two tetrameric surfactants, which are quaternary ammonium chlorides, with medium length spacer groups (C-3-C-6) separating the individual surfactant fragments. Two standard cationic surfactants served as references. The number of hydrophobic chains making up a micellar core is relatively low for the oligomeric surfactants, the spacer length playing an important role. For the dimers, the number decreases from 32 to 21 with increasing spacer length. These numbers decrease further with increasing degree of oligomerization down to values of about 15. As for many conventional ionic surfactants, the micelles of all oligomers studied grow only slightly with the concentration, and they remain in the regime of small micelles up to concentrations of at least 3 wt \%.}, language = {en} }