@article{MondalBhuniaBaburinetal.2008, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seiert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, doi = {10.1039/C3CC42156B}, year = {2008}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases.}, language = {en} } @article{DebatinThomasKellingetal.2010, author = {Debatin, Franziska and Thomas, Arne and Kelling, Alexandra and Hedin, Niklas and Bacsik, Zoltan and Senkovska, Irena and Kaskel, Stefan and Junginger, Matthias and M{\"u}ller, Holger and Schilde, Uwe and J{\"a}ger, Christian and Friedrich, Alwin and Holdt, Hans-J{\"u}rgen}, title = {In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2-and CO2-storage ability}, issn = {1433-7851}, doi = {10.1002/anie.200906188}, year = {2010}, abstract = {Narrow channels with polar walls are the structural and functional features responsible for the high capacity of a zinc-organic framework based on an imidazolate-amide-imidate ligand for the uptake of H2 and CO2 (see structure: orange Zn, blue N, red O, dark gray C, light gray H). The rigid and stable chelating ligand was synthesized in situ by partial hydrolysis of a dicyanoimidazole compound.}, language = {en} } @article{SetoMaDavisetal.2012, author = {Seto, Jong and Ma, Yurong and Davis, Sean A. and Meldrum, Fiona and Gourrier, Aurelien and Kim, Yi-Yeoun and Schilde, Uwe and Sztucki, Michael and Burghammer, Manfred and Maltsev, Sergey and J{\"a}ger, Christian and C{\"o}lfen, Helmut}, title = {Structure-property relationships of a biological mesocrystal in the adult sea urchin spine}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {109}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {10}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1109243109}, pages = {3699 -- 3704}, year = {2012}, abstract = {Structuring overmany length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, showhow Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of howcrystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.}, language = {en} } @article{MondalBhuniaBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, series = {Chemical communications}, volume = {49}, journal = {Chemical communications}, number = {69}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c3cc42156b}, pages = {7599 -- 7601}, year = {2013}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N-2 and CH4 gases.}, language = {en} }