@article{KlinkaBalentovaBernatetal.2006, author = {Klinka, Karel D. and Balentova, Eva and Bern{\´a}t, Juraj and Imrich, J{\´a}n and Vavrusov{\´a}, Martina and Pihlaja, Kalevi and Koch, Andreas and Kleinpeter, Erich and Kelling, Alexandra and Schilde, Uwe}, title = {Structural revision of products resulting from the reaction of methylhydrazine with acridin-9-yl isothiocyanate due to unexpected acridinyl migration And further reactions}, issn = {1551-7004}, year = {2006}, abstract = {The reaction of methyl acridin-9-ylthiosemicarbazide under basic conditions with methyl bromoacetate resulted in a 1,3-thiazolin-4-one structure as provided by X-ray crystallography. The structure forced a re-evaluation of the reactant methyl acridin-9-ylthiosemicarbazide, originally thought to be 2-methyl 4-acridin-9-ylthiosemicarbazide based on synthetic expectations, but which when examined by X-ray crystallography was found to be in fact the isomeric 2- methyl 1-acridin-9-ylthiosemicarbazide resulting from rearrangement via a spiro form which it is in equilibrium with in solution. The product resulting from reaction with methyl iodide was also studied and the previously reported semicarbazide produced by reaction with MNO was re-examined. In both cases, the 1,2 isomer rather than the 2,4 isomer was found to be present based on the sign of the 3JCH3,N11 coupling. Full characterization of the compounds was rendered by 1H, 13C, and 15N solution-state NMR, and in the solid state, by both 13C and 15N NMR.}, language = {en} } @article{BoehmTomaszcikovaImrichetal.2009, author = {B{\"o}hm, Stanislav and Tomaszcikov{\´a}, Jana and Imrich, J{\´a}n and Danihel, Ivan and Kristian, Pavol and Koch, Andreas and Kleinpeter, Erich and Klika, Karel D.}, title = {Computational study to assign structure, tautomerism, E/Z and s-cis/s-trans isomerism, pi-delocalization, partial aromaticity, and the ring size of 1,3-thiazolidin-4-ones and 1,3-thiazin-4-ones formed from thiosemicarbazides}, issn = {0166-1280}, year = {2009}, abstract = {A set of structures encompassing 1-(9-acridinyl)thiosemicarbazide and its 2-methyl derivative together with their various tautomeric structures; the 5-membered ring 1,3-thiazolidin-4-one products resulting from the reaction of 1- (9-acridinyl)thiosemicarbazide and its 2-methyl derivative with dimethyl acetylenedicarboxylate (DMAD) together with the alternative 6-membered ring isomeric reaction products as well as other potential isomeric structures; and the 6- membered ring 1,3-thiazin-4-one product resulting from the reaction of 2-methyl-1-(9-acridinyl)thiosemicarbazide with methyl propiolate (MP) together with the alternative 5-membered ring isomeric reaction product were all extensively studied by molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory. The ring-chain tautomerism of the thiosemicarbazides, the regio- and stereoselectivity of the reactions, the adopted conformations and E/Z configurations of the products, the prototropic tautomerism of all the compounds, and the reasons for the predominance of the s-cis conformation of the Z configuration of the 1,3-thiazolidin-4-one product in particular were all extensively analyzed. Comparison of the modeled structures were also made to the 1,3-thiazolidin-4-one and 1,3-thiazin-4-one structures of the methyl derivative as well as 1-(9-acridinyl)thiosemicarbazide available from X-ray crystallographic analysis. Tactics utilizing spectroscopic methods {IR frequencies (;) and NMR chemical shifts (;), scalar coupling constants (J), and NOEs (;)} in conjunction with molecular modeling calculations of the spectral parameters {frequency calculations (;) and NMR ; using the GIAO method and J by calculation of the Fermi contact term} were evaluated in terms of proving 5- or 6-membered ring formation.}, language = {en} } @article{BoehmTomašcikovaImrichetal.2009, author = {Boehm, Stanislav and Tomašcikov{\´a}, Jana and Imrich, J{\´a}n and Danihel, Ivan and Kristian, Pavol and Koch, Andreas and Kleinpeter, Erich and Klika, Karel D.}, title = {Computational study to assign structure, tautomerism, E/Z and s-cis/s-trans isomerism, pi-delocalization, partial aromaticity, and the ring size of 1,3-thiazolidin-4-ones and 1,3-thiazin-4-ones formed from thiosemicarbazides}, issn = {0166-1280}, doi = {10.1016/j.theochem.2009.09.019}, year = {2009}, abstract = {A set of structures encompassing 1-(9-acridinyl)thiosemicarbazide and its 2-methyl derivative together with their various tautomeric structures; the 5-membered ring 1,3-thiazolidin-4-one products resulting from the reaction of 1- (9-acridinyl)thiosemicarbazide and its 2-methyl derivative with dimethyl acetylenedicarboxylate (DMAD) together with the alternative 6-membered ring isomeric reaction products as well as other potential isomeric structures; and the 6- membered ring 1,3-thiazin-4-one product resulting from the reaction of 2-methyl-1-(9-acridinyl)thiosemicarbazide with methyl propiolate (MP) together with the alternative 5-membered ring isomeric reaction product were all extensively studied by molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory. The ring-chain tautomerism of the thiosemicarbazides, the regio- and stereoselectivity of the reactions, the adopted conformations and E/Z configurations of the products, the prototropic tautomerism of all the compounds, and the reasons for the predominance of the s-cis conformation of the Z configuration of the 1,3-thiazolidin-4-one product in particular were all extensively analyzed. Comparison of the modeled structures were also made to the 1,3-thiazolidin-4-one and 1,3-thiazin-4-one structures of the methyl derivative as well as 1-(9-acridinyl)thiosemicarbazide available from X-ray crystallographic analysis. Tactics utilizing spectroscopic methods {1R frequencies (nu) and NMR chemical shifts (delta), scalar coupling constants (J), and NOEs (eta)} in conjunction with molecular modeling calculations of the spectral parameters (frequency calculations (v) and NMR 6 using the GIAO method and J by calculation of the Fermi contact term) were evaluated in terms of proving 5- or 6-membered ring formation.}, language = {en} }