@article{SperlichKoeckerling2021, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {Cluster salts [Nb6Cl12(HIm)(6)]A(n) (with HIm=1H-imidazole and A=Mineral Acid Anion, n=1 or 2) made in and with Bronsted-basic ionic liquids and liquid mixtures}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000266}, pages = {248 -- 254}, year = {2021}, abstract = {Four new hexanuclear niobium cluster compounds of the general formula [Nb6Cl12(HIm)(6)](A)(n) . x(solvent molecule) (HIm=1H-imidazole, A=mineral acid anion, Cl- (n=2) (1), (SO4)(2-) (n=1) (2), (CrO4)(2-) (n=1) (3), and (HAsO4)(2-) (n=1) (4)) were prepared. Their synthesis can be done in basic ionic liquids, which form on the addition of a mineral acid, which also delivers the counter anion for the final cluster compound, to an excess of the 1H-imidazole. Some addition of an auxiliary solvent, like methanol, improves the speed of crystallisation. The cluster unit comprises a hexanuclear Nb-6 unit of octahedral shape with the edges bridged by Cl atoms and the exo sites being occupied by N-bonded 1H-imidazole ligands. The cluster cation carries sixteen cluster-based electrons. Between the NH groups of the ligands of the cluster unit, the anions and the co-crystallised water (1), or 1H-imidazole and methanol molecules (2, 3, and 4) a network of hydrogen bonds exists.}, language = {en} } @article{SalamaNeumannGuenteretal.2014, author = {Salama, Ahmed and Neumann, Mike and G{\"u}nter, Christina and Taubert, Andreas}, title = {Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials}, series = {Beilstein journal of nanotechnology}, volume = {5}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.5.167}, pages = {1553 -- 1568}, year = {2014}, abstract = {Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/ chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies.}, language = {en} } @article{TaoLiuWuetal.2020, author = {Tao, Lumi and Liu, Yuchuan and Wu, Dan and Wei, Qiao-Hua and Taubert, Andreas and Xie, Zailai}, title = {Luminescent Ionogels with Excellent Transparency, High Mechanical Strength, and High Conductivity}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10122521}, pages = {11}, year = {2020}, abstract = {The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf₂]) within an organic-inorganic hybrid host. The organic-inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic-organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO₂. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf₂] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm⁻¹ at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels.}, language = {en} } @article{WinterZabelStrauch2012, author = {Winter, Alette and Zabel, Andre and Strauch, Peter}, title = {Tetrachloridocuprates(II)-Synthesis and Electron Paramagnetic Resonance (EPR) Spectroscopy}, series = {International journal of molecular sciences}, volume = {13}, journal = {International journal of molecular sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1661-6596}, doi = {10.3390/ijms13021612}, pages = {1612 -- 1619}, year = {2012}, abstract = {Ionic liquids (ILs) on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR) spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II), [CuCl4](2-), with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II) centers. Nevertheless, the principal values of the electron Zeemann tensor (g parallel to and g perpendicular to) of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids.}, language = {en} } @article{JelicicYasinBeuermann2011, author = {Jelicic, Aleksandra and Yasin, Muttaqin and Beuermann, Sabine}, title = {Toward the description and prediction of solvent induced variations in Methacrylate Propagation Rate Coefficients on the basis of Solvatochromic Parameters}, series = {Macromolecular reaction engineering}, volume = {5}, journal = {Macromolecular reaction engineering}, number = {5-6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1862-832X}, doi = {10.1002/mren.201000058}, pages = {232 -- 242}, year = {2011}, abstract = {Benzyl methacrylate (BzMA) propagation rate coefficients, k(p), were determined in ionic liquids and common organic solvents via pulsed-laser polymerizations with subsequent polymer analysis by size-exclusion chromatography (PLP-SEC). The aim of the work is to gain a deeper understanding of the solvent influence on k(p) and to develop a general correlation between solvent-induced variations in k(p) and solvent properties. Applying a linear solvation energy relationship (LSER), which correlates k(p) to solvent solvatochromic parameters, suggests that dipolarity/polarizability determines the solvent influence on k(p). To compare the solvent influence on BzMA k(p) with data for methyl methacrylate, hydroxypropyl methacrylate, and 2-ethoxyethyl methacrylate normalized k(p) data were treated by a single LSER, providing a universal treatment of the solvent influence on the propagation kinetics of the four monomers. Further, the predictive capabilities of this universal correlation were tested with additional monomers from the methacrylate family.}, language = {en} }