@article{ZhongMetwalliRawolleetal.2015, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed in Situ by Real-Time Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b00645}, pages = {3604 -- 3612}, year = {2015}, abstract = {The rehydration of thermoresponsive poly(monomethoxydiethylene glycol acrylate) (PMDEGA) films exhibiting a lower critical solution temperature (LCST) type demixing phase transition in aqueous environments, induced by a decrease in temperature, is investigated in situ with real-time neutron reflectivity. Two different starting conditions (collapsed versus partially swollen chain conformation) are compared. In one experiment, the temperature is reduced from above the demixing temperature to well below the demixing temperature. In a second experiment, the starting temperature is below the demixing temperature, but within the transition regime, and reduced to the same final temperature. In both cases, the observed rehydration process can be divided into three stages: first condensation of water from the surrounding atmosphere, then absorption of water by the PMDEGA film and evaporation of excess water, and finally, rearrangement of the PMDEGA chains. The final rehydrated film is thicker and contains more absorbed water as compared with the initially swollen film at the same temperature well below the demixing temperature.}, language = {en} } @article{ZhongMetwalliRawolleetal.2013, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Structure and Thermal Response of Thin Thermoresponsive Polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene Films}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {46}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma400627u}, pages = {4069 -- 4080}, year = {2013}, abstract = {Thin thermoresponsive films of the triblock copolymer polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene (P(S-b-MDEGA-b-S)) are investigated on silicon substrates. By spin coating, homogeneous and smooth films are prepared for a range of film thicknesses from 6 to 82 nm. Films are stable with respect to dewetting as investigated with optical microscopy and atomic force microscopy. P(S-b-MDEGA-b-S) films with a thickness of 39 nm exhibit a phase transition of the lower critical solution temperature (LCST) type at 36.5 degrees C. The swelling and the thermoresponsive behavior of the films with respect to a sudden thermal stimulus are probed with in-situ neutron reflectivity. In undersaturated water vapor swelling proceeds without thickness increase. The thermoresponse proceeds in three steps: First, the film rejects water as the temperature is above LCST. Next, it stays constant for 600 s, before the collapsed film takes up water again. With ATR-FTIR measurements, changes of bound water in the film caused by different thermal stimuli are studied. Hydrogen bonds only form between C=O and water in the swollen film. Above the LCST most hydrogen bonds with water are broken, but some amount of bound water remains inside the film in agreement with the neutron reflectivity data. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that the inner lateral structure is not significantly influenced by the different thermal stimuli.}, language = {en} } @article{ZhongMetwalliKauneetal.2012, author = {Zhong, Qi and Metwalli, Ezzeldin and Kaune, Gunar and Rawolle, Monika and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm25401h}, pages = {5241 -- 5249}, year = {2012}, abstract = {The switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) (PMDEGA) are investigated. Homogeneous and smooth PMDEGA films with a thickness of 35.9 nm are prepared on silicon substrates by spin coating. As probed with white light interferometry, PMDEGA films with a thickness of 35.9 nm exhibit a phase transition temperature of the lower critical solution temperature (LCST) type of 40 degrees C. In situ neutron reflectivity is performed to investigate the thermo-responsive behavior of these PMDEGA hydrogel films in response to a sudden thermal stimulus in deuterated water vapor atmosphere. The collapse transition proceeds in a complex way which can be seen as three steps. The first step is the shrinkage of the initially swollen film by a release of water. In the second step the thickness remains constant with water molecules embedded in the film. In the third step, perhaps due to a conformational rearrangement of the collapsed PMDEGA chains, water is reabsorbed from the vapor atmosphere, thereby giving rise to a relaxation process. Both the shrinkage and relaxation processes can be described by a simple model of hydrogel deswelling.}, language = {en} } @article{ZhongAdelsbergerNiedermeieretal.2013, author = {Zhong, Qi and Adelsberger, Joseph and Niedermeier, M. A. and Golosova, Anastasi and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Funari, S. S. and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {The influence of selective solvents on the transition behavior of poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) thick films}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {291}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-012-2879-4}, pages = {1439 -- 1451}, year = {2013}, abstract = {Thick poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) [P(S-b-MDEGA-b-S)] films (thickness 5 mu m) are prepared from different solvents on flexible substrates by solution casting and investigated with small-angle X-ray scattering. As the solvents are either PS- or PMDEGA-selective, micelles with different core-shell micellar structures are formed. In PMDEGA-selective solvents, the PS block is the core and PMDEGA is the shell, whereas in PS-selective solvents, the order is reversed. After exposing the films to liquid D2O, the micellar structure inside the films prepared from PMDEGA-selective solvents remains unchanged and only the PMDEGA (shell part) swells. On the contrary, in the films prepared from PS-selective solvents, the micelles revert the core and the shell. This reversal causes more entanglements of the PMDEGA chains between the micelles. Moreover, the thermal collapse transition of the PMDEGA block in liquid D2O is significantly broadened. Irrespective of the solvent used for film preparation, the swollen PMDEGA shell does not show a prominent shrinkage when passing the phase transition, and the transition process occurs via compaction. The collapsed micelles have a tendency to densely pack above the transition temperature.}, language = {en} } @article{ZerballLaschewskyvonKlitzing2015, author = {Zerball, Maximilian and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b04350}, pages = {11879 -- 11886}, year = {2015}, abstract = {The odd even effect, i.e., the influence of the outermost layer of polyelectrolyte multilayers (PEMs) on their swelling behavior, is investigated. For that purpose poly(styrene sodium sulfonate) (PSS)/poly(diallyl-dimethylammonium chloride) (PDADMAC) polyelectrolyte multilayers are studied in air with 1\% relative humidity (RH), 30\% RH, 95\% RH, and in liquid water by ellipsometry, atomic force microscopy (AFM), and X-ray reflectometry (XRR). Since the total amount of water uptake in swollen PEMs is divided into two fractions, the void water and the swelling water, a correct evaluation of the odd even effect is only possible if both fractions are examined separately. In order to allow measuring samples over a larger thickness regime the investigation of a larger amount of samples is required. Therefore, the concept of separating void water from swelling water using neutron reflectometry is for the first time transferred to ellipsometry. The subsequent analysis of swelling water, void water, and roughness revealed the existence of two types of odd even effects: an odd even effect which addresses only the surface of the PEM (surface-odd even effect) and an odd even effect which addresses also the bulk of the PEM (bulk-odd even effect). The appearance of both effects is dependent on the environment; the surface-odd even effect is only detectable in humid air while the bulk-odd even effect is only detectable in liquid water. The bulk-odd even effect is related to the osmotic pressure between the PEM and the surrounding water. A correlation between the amount of void water and both odd even effects is not found. The amount of void water is independent of the terminated layer and the thickness of PEMs.}, language = {en} } @article{ZehmLaschewskyLiangetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Liang, Hua and Rabe, J{\"u}rgen P.}, title = {Straightforward access to amphiphilic dual bottle brushes by combining RAFT, ATRP, and NMP polymerization in one sequence}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma2015613}, pages = {9635 -- 9641}, year = {2011}, abstract = {Molecular brush diblock copolymers were synthesized by the orthogonal overlay of the RAFT (reversible addition-fragmentation chain transfer), the ATRP (atom transfer radical polymerization), and the NMP (nitroxide-mediated polymerization) techniques. This unique combination enabled the synthesis of the complex amphiphilic polymers without the need of postpolymerization modifications, using a diblock copolymer intermediate made from two selectively addressable inimers and applying a sequence of four controlled free radical polymerization steps in total. The resulting polymers are composed of a thermosensitive poly(N-isopropylacrylamide) brush as hydrophilic block and a polystyrene brush as hydrophobic block, thus translating the structure of the established amphiphilic diblock copolymers known as macro surfactants to the higher size level of "giant surfactants". The dual molecular brushes and the aggregates formed on ultra flat solid substrates were visualized by scanning force microscopy (SFM).}, language = {en} } @article{ZehmLaschewskyHeunemannetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Heunemann, Peggy and Gradzielski, Michael and Prevost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Lutz, Jean-Francois}, title = {Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c0py00200c}, pages = {137 -- 147}, year = {2011}, abstract = {The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains.}, language = {en} } @article{ZehmLaschewskyGradzielskietal.2010, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Gradzielski, Michael and Pr{\´e}vost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Schweins, Ralf and Gummel, J{\´e}r{\´e}mie}, title = {Amphiphilic dual brush block copolymers as "giant surfactants" and their aqueous self-assembly}, issn = {0743-7463}, doi = {10.1021/La903087p}, year = {2010}, abstract = {Amphiphilic dual brush diblock as well as symmetrical triblock polymers were synthesized by the overlay of the reversible addition-fragmentation chain transfer and the nitroxide mediated polymerization (NMP) techniques. While poly(ethylene glycol) brushes served as hydrophilic block, the hydrophobic block was made of polystyrene brushes. The resulting "giant surfactants" correspond structurally to the established amphiphilic diblock and triblock copolymer known as macrosurfactants. The aggregation behavior of the novel "giant surfactants" in aqueous solution was studied by dynamic light scattering, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) over a large range in reciprocal space. Further, the self-assembled aggregates Were investigated by scanning force microscopy (SFM) after deposition on differently functionalized ultraflat solid substrates. Despite the high fraction of hydrophobic segments, the polymers form stable mesoscopic, spherical aggregates with hydrodynamic diameters in the range of 150-350 nm. Though prepared from well-defined individual polymers, the aggregates show several similarities to hard core latexes. They are stable enough to he deposited without much changes onto surfaces, where they cluster and show Spontaneous sorting according to their size within the clusters, with the larger aggregates being in the center.}, language = {en} } @article{YuillaumeGlinelJonasetal.2003, author = {Yuillaume, P. Y. and Glinel, Karine and Jonas, Alain M. and Laschewsky, Andr{\´e}}, title = {Ordered polyelectrolyte "Multilayers" : 6. Effect of the molecular parameters on the formation of hybrid multilayers complexing poly(diallylammonium) salt and exfoliated clay}, year = {2003}, language = {en} } @article{WischerhoffGlatzelUhligetal.2009, author = {Wischerhoff, Erik and Glatzel, Stefan and Uhlig, Katja and Lankenau, Andreas and Lutz, Jean-Francois and Laschewsky, Andr{\´e}}, title = {Tuning the thickness of polymer brushes grafted from nonlinearly growing multilayer assemblies}, issn = {0743-7463}, doi = {10.1021/La804197j}, year = {2009}, abstract = {A new versatile method for tuning the thickness of surface-tethered polymer brushes is introduced. It is based on the combination of polyelectrolyte multilayer deposition and surface-initiated atom transfer radical polymerization. To control the thickness of the brushes, the nonlinear growth of certain polyelectrolyte multilayer systems is exploited. The method is demonstrated to work with different polyelectrolytes and different monomers. The relevance for applications is demonstrated by cell adhesion experiments oil grafted thermoresponsive polymer layers with varying thickness.}, language = {en} } @article{WischerhoffBadiLutzetal.2010, author = {Wischerhoff, Erik and Badi, Nezha and Lutz, Jean-Francois and Laschewsky, Andr{\´e}}, title = {Smart bioactive surfaces}, issn = {1744-683X}, doi = {10.1039/B913594d}, year = {2010}, abstract = {The purpose of this highlight is to define the emerging field of bioactive surfaces. In recent years, various types of synthetic materials capable of "communicating'' with biological objects such as nucleic acids, proteins, polysaccharides, viruses, bacteria or living cells have been described in the literature. This novel area of research certainly goes beyond the traditional field of smart materials and includes different types of sophisticated interactions with biological entities, such as reversible adhesion, conformational control, biologically-triggered release and selective permeation. These novel materials may be 2D planar surfaces as well as colloidal objects or 3D scaffolds. Overall, they show great promise for numerous applications in biosciences and biotechnology. For instance, practical applications of bioactive surfaces in the fields of bioseparation, cell engineering, biochips and stem-cell differentiation are briefly discussed herein.}, language = {en} } @misc{WischerhoffBadiLaschewskyetal.2011, author = {Wischerhoff, Erik and Badi, Nezha and Laschewsky, Andr{\´e} and Lutz, Jean-Francois}, title = {Smart polymer surfaces concepts and applications in biosciences}, series = {Advances in polymer science = Fortschritte der Hochpolymeren-Forschung}, volume = {240}, journal = {Advances in polymer science = Fortschritte der Hochpolymeren-Forschung}, number = {1}, editor = {B{\"o}rner, Hans Gerhard and Lutz, JF}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-20154-7}, issn = {0065-3195}, doi = {10.1007/12_2010_88}, pages = {1 -- 33}, year = {2011}, abstract = {Stimuli-responsive macromolecules (i.e., pH-, thermo-, photo-, chemo-, and bioresponsive polymers) have gained exponential importance in materials science, nanotechnology, and biotechnology during the last two decades. This chapter describes the usefulness of this class of polymer for preparing smart surfaces (e.g., modified planar surfaces, particles surfaces, and surfaces of three-dimensional scaffolds). Some efficient pathways for connecting these macromolecules to inorganic, polymer, or biological substrates are described. In addition, some emerging bioapplications of smart polymer surfaces (e.g., antifouling surfaces, cell engineering, protein chromatography, tissue engineering, biochips, and bioassays) are critically discussed.}, language = {en} } @article{WeissWienkBoelensetal.2014, author = {Weiss, Jan and Wienk, Hans and Boelens, Rolf and Laschewsky, Andr{\´e}}, title = {Block copolymer micelles with an intermediate star-/flower-like structure studied by H-1 NMR relaxometry}, series = {Macromolecular chemistry and physics}, volume = {215}, journal = {Macromolecular chemistry and physics}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300753}, pages = {915 -- 919}, year = {2014}, abstract = {H-1 NMR relaxation is used to study the self-assembly of a double thermoresponsive diblock copolymer in dilute aqueous solution. Above the first transition temperature, at which aggregation into micellar structures is observed, the trimethylsilyl (TMS)-labeled end group attached to the shell-forming block shows a biphasic T-2 relaxation. The slow contribution reflects the TMS groups located at the periphery of the hydrophilic shell, in agreement with a star-like micelle. The fast T-2 contribution corresponds to the TMS groups, which fold back toward the hydrophobic core, reflecting a flower-like micelle. These results confirm the formation of block copolymer micelles of an intermediate nature (i.e., of partial flower-like and star-like character), in which a part of the TMS end groups folds back to the core due to hydrophobic interactions.}, language = {en} } @article{WeissLiWischerhoffetal.2012, author = {Weiss, Jan and Li, Ang and Wischerhoff, Erik and Laschewsky, Andr{\´e}}, title = {Water-soluble random and alternating copolymers of styrene monomers with adjustable lower critical solution temperature}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c1py00422k}, pages = {352 -- 361}, year = {2012}, abstract = {Random copolymers of 4-vinylbenzyl tri(oxyethylene) and tetra(oxyethylene) ethers, as well as alternating copolymers of 4-vinylbenzyl methoxytetra(oxyethylene) ether and a series of N-substituted maleimides, were synthesised by conventional free radical polymerisation, reversible addition fragmentation chain transfer (RAFT) and atom transfer radical polymerisation (ATRP). Their thermosensitive behaviour in aqueous solution was studied by turbidimetry and dynamic light scattering. Depending on the copolymer composition, a LCST type phase transition was observed in water. The transition temperature of the obtained random as well as alternating copolymers could be varied within a broad temperature window. In the case of the random copolymers, transition temperatures could be easily fine-tuned, as they showed a linear dependence on the copolymer composition, and were additionally modified by the nature of the polymer end-groups. Alternating copolymers were extremely versatile for implementing a broad range of variations of the phase transition temperatures. Further, while alternating copolymers derived from 4-vinylbenzyl methoxytetra(oxyethylene) ether and maleimides with small hydrophobic side chains underwent macroscopic phase separation when dissolved in water and heated above their cloud point, the incorporation of maleimides bearing larger hydrophobic substituents resulted in the formation of mesoglobules above the phase transition temperature, with hydrodynamic diameters of less than 100 nm.}, language = {en} } @article{WeissLaschewsky2012, author = {Weiss, Jan and Laschewsky, Andr{\´e}}, title = {One-step synthesis of amphiphilic, double thermoresponsive diblock copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {45}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma300285y}, pages = {4158 -- 4165}, year = {2012}, abstract = {The copolymerization of an excess of a functionalized styrene monomer, 4-vinylbenzyl methoxytetrakis(oxyethylene) ether, with various N-substituted maleimides yields tapered diblock copolymers in a one-step procedure, when applying reversible deactivation radical polymerization (RDRP) methods, such as ATRP and RAFT. The particular chemical structure of the diblock copolymers prepared results in reversible temperature-responsive two-step aggregation behavior in dilute aqueous solution. In this way, a double hydrophilic block copolymer is transformed step by step into an amphiphilic macrosurfactant, and finally into a double hydrophobic copolymer, as followed by turbidimetry and dynamic light scattering. Copolymers in which the maleimide repeat units bear short hydrophobic side chains are freely water-soluble at low temperature and form micellar aggregates above their cloud point. Further heating above the phase transition temperature of the second block results in secondary aggregation. Copolymers with maleimides that bear strongly hydrophobic substituents undergo two thermally induced aggregation steps upon heating, too, but show in addition intramolecular hydrophobic association in water already at low temperatures, similar to the behavior of polysoaps.}, language = {en} } @article{WeissLaschewsky2011, author = {Weiss, Jan and Laschewsky, Andr{\´e}}, title = {Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la200115p}, pages = {4465 -- 4473}, year = {2011}, abstract = {A series of triple-thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (PNPAM, A), poly(methoxydiethylene glycol acrylate) (PMDEGA, B), and poly(N-ethylacrylamide) (PNEAM, C) was synthesized by sequential reversible addition-fragmentation chain transfer polymerizations. Polymers of differing block sequences, ABC, BAC, and ACB, with increasing phase transition temperatures in the order A < B < C were prepared. Their aggregation behavior in dilute aqueous solution was investigated using dynamic light scattering, turbidimetry, and NMR spectroscopy. The self-organization of such polymers was found to dependent strongly on the block sequence. While polymers with a terminal low-LCST (lower critical solution temperature) block undergo aggregation above the first phase transition temperature at 20-25 degrees C, triblock copolymers with the low-LCST block in the middle show aggregation only above the second phase transition. The collapse of the middle block is not sufficient to induce aggregation but produces instead stable, unimolecular micelles with a collapsed middle block, as supported by NMR and fluorescence probe data. Continued heating of all copolymers led to two additional thermal transitions at 40-55 and 70-80 degrees C, which could be correlated to the phase transitions of the B and C blocks, respectively. All polymers show a high tendency for cluster formation, once aggregation is induced. The carrier abilities of the triple responsive triblock copolymers for hydrophobic agents were probed with the solvatochromic fluorescence dye Nile Red. With passing through the first thermal transition, the block copolymers are capable of solubilizing Nile Red. In the case of block copolymers with sequences ABC or ACB, which bear the low-LCST block at one terminus, notable amounts of dye are solubilized already at this stage. In contrast, the hydrophobic probe is much less efficiently incorporated by the BAC triblock copolymer, which forms unimolecular micelles. Only after the collapse of the B block, when reaching the second phase transition at about 45 degrees C, does aggregation occur and solubilization becomes efficient. In the case of ABC and ACB polymers, the hydrophobic probe seems to partition between the originally collapsed A chains and the additional hydrophobic chains formed after the collapse of the less hydrophobic B block.}, language = {en} } @article{WeissBoettcherLaschewsky2011, author = {Weiss, Jan and B{\"o}ttcher, Christoph and Laschewsky, Andr{\´e}}, title = {Self-assembly of double thermoresponsive block copolymers end-capped with complementary trimethylsilyl groups}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c0sm00531b}, pages = {483 -- 492}, year = {2011}, abstract = {A set of double thermoresponsive diblock copolymers poly(N-n-propylacrylamide)-block-poly(N-ethylacrylamide) (PNPAM-b-PNEAM) was synthesised by sequential reversible addition-fragmentation chain transfer (RAFT) polymerisations. Using a twofold trimethylsilyl (TMS)-labeled RAFT-agent, the relative size of the two blocks was varied. While soluble as unimers below 15 degrees C, all copolymers exhibited thermally induced two-step self-assembly in water, due to distinct lower critical solution temperature (LCST) phase transitions of PNPAM (around 20 degrees C) and PNEAM (around 70 degrees C). Their temperature-dependent self-organisation in dilute aqueous solution was studied by turbidimetry, dynamic light scattering, transmission electron microscopy, and (1)H NMR spectroscopy. The copolymers show distinct, two-step self-organisation behaviour with respect to transition temperatures, aggregate type and size, which can be correlated to the relative lengths of the low and high LCST blocks. For polymers having short blocks with low LCST, the first thermal transition induces the formation of individual micelles. Further heating above the second thermal transition results reversibly either in a shrink of the micelle size or in aggregation of the micelles, with hydrodynamic diameters below 250 nm. In contrast in the case of polymers having a long block with low LCST, the first thermal transition already leads to clusters of micelles, while the second thermal transition makes the clusters shrink. Noteworthy, the twofold TMS-labeled end groups report not only on the molar masses of the polymers, but can simultaneously serve as NMR-probes for the self-assembly process. The signal of the TMS-aryl end group displays a reversible temperature dependent, two-step splitting that is indicative of the self-organisation of the block copolymers.}, language = {en} } @article{WattebledLaschewskyMoussaetal.2006, author = {Wattebled, Laurent and Laschewsky, Andr{\´e} and Moussa, Alain and Habib-Jiwan, Jean-Louis}, title = {Aggregation numbers of cationic oligomeric surfactants : A time-resolved fluorescence quenching study}, doi = {10.1021/La052414h}, year = {2006}, abstract = {The micelle aggregation numbers (N-agg) of several series of cationic oligomeric surfactants were determined by time-resolved fluorescence quenching (TRFQ) experiments, using advantageously 9,10-dimethylanthracene as fluorophore. The study comprises six dimeric ("gemini"), three trimeric, and two tetrameric surfactants, which are quaternary ammonium chlorides, with medium length spacer groups (C-3-C-6) separating the individual surfactant fragments. Two standard cationic surfactants served as references. The number of hydrophobic chains making up a micellar core is relatively low for the oligomeric surfactants, the spacer length playing an important role. For the dimers, the number decreases from 32 to 21 with increasing spacer length. These numbers decrease further with increasing degree of oligomerization down to values of about 15. As for many conventional ionic surfactants, the micelles of all oligomers studied grow only slightly with the concentration, and they remain in the regime of small micelles up to concentrations of at least 3 wt \%.}, language = {en} } @article{WangKaunePerlichetal.2010, author = {Wang, Weijia and Kaune, Gunar and Perlich, Jan and Paradakis, Christine M. and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Schlage, K. and R{\"o}hlsberger, Ralf and Roth, Stephan V. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Swelling and switching kinetics of gold coated end-capped poly(N-isopropylacrylamide) thin films}, issn = {0024-9297}, doi = {10.1021/Ma902637a}, year = {2010}, abstract = {Thin thermoresponsive hydrogel films of poly(N-isopropylacrylamide) end-capped with n-butyltrithiocarbonate(nbc- PNIPAM) oil si I icon supports with a gold layer on top, causing an asymmetric confinement, are investigated. For two different gold layer thicknesses (nominally 0.4 and 5 rim), the swelling and switching kinetics are probed with in situ neutron reflectivity. With a temperature jump from 23 to 40 degrees C the film is switched from a swollen into a collapsed state. For the thin gold layer this switching is faster as compared to the thick gold layer. The switching is a two-step process of water release and a subsequent structural relaxation. fit swelling and deswelling cycles, aging of the films is probed. After five cycles, the film exhibits enhanced water storage capacity. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that these gold coated nbc-PNIPAM films do not age with respect to the inner structure but slightly roughen at the gold surface. As revealed by atomic force microscopy, the morphology of the gold layer is changed by the water uptake and release.}, language = {en} } @article{WangGeigerKreuzeretal.2022, author = {Wang, Peixi and Geiger, Christina and Kreuzer, Lucas and Widmann, Tobias and Reitenbach, Julija and Liang, Suzhe and Cubitt, Robert and Henschel, Cristiane and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Poly(sulfobetaine)-based diblock copolymer thin films in water/acetone atmosphere: modulation of water hydration and co-nonsolvency-triggered film contraction}, series = {Langmuir : the ACS journal of surfaces and colloids}, volume = {38}, journal = {Langmuir : the ACS journal of surfaces and colloids}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.2c00451}, pages = {6934 -- 6948}, year = {2022}, abstract = {The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied viaspectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2OorD2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2OorD2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, where as the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.}, language = {en} }