@article{LucenaPerezBazzicalupoPaijmansetal.2022, author = {Lucena-Perez, Mar{\´i}a and Bazzicalupo, Enrico and Paijmans, Johanna and Kleinman-Ruiz, Daniel and Dal{\´e}n, Love and Hofreiter, Michael and Delibes, Miguel and Clavero, Miguel and Godoy, Jos{\´e} A.}, title = {Ancient genome provides insights into the history of Eurasian lynx in Iberia and Western Europe}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {285}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107518}, pages = {9}, year = {2022}, abstract = {The Eurasian lynx (Lynx lynx) is one of the most widely distributed felids in the world. However, most of its populations started to decline a few millennia ago. Historical declines have been especially severe in Europe, and particularly in Western Europe, from where the species disappeared in the last few centuries. Here, we analyze the genome of an Eurasian lynx inhabiting the Iberian Peninsula 2500 ya, to gain insights into the phylogeographic position and genetic status of this extinct population. Also, we contextualize previous ancient data in the light of new phylogeographic studies of the species. Our results suggest that the Iberian population is part of an extinct European lineage closely related to the current Carpathian-Baltic lineages. Also, this sample holds the lowest diversity reported for the species so far, and similar to that of the highly endangered Iberian lynx. A combination of historical factors, such as a founder effect while colonizing the peninsula, together with intensified human impacts during the Holocene in the Cantabrian strip, could have led to a genetic impoverishment of the population and precipitated its extinction. Mitogenomic lineages distribution in space and time support the long-term coexistence of several lineages of Eurasian lynx in Western Europe with fluctuating ranges. While mitochondrial sequences related to the lineages currently found in Balkans and Caucasus were predominant during the Pleistocene, those more closely related to the lineage currently distributed in Central Europe prevailed during the Holocene. The use of ancient genomics has proven to be a useful tool to understand the biogeographic pattern of the Eurasian lynx in the past.}, language = {en} } @article{ChangKnappEnketal.2017, author = {Chang, Dan and Knapp, Michael and Enk, Jacob and Lippold, Sebastian and Kircher, Martin and Lister, Adrian M. and MacPhee, Ross D. E. and Widga, Christopher and Czechowski, Paul and Sommer, Robert and Hodges, Emily and St{\"u}mpel, Nikolaus and Barnes, Ian and Dal{\´e}n, Love and Derevianko, Anatoly and Germonpr{\´e}, Mietje and Hillebrand-Voiculescu, Alexandra and Constantin, Silviu and Kuznetsova, Tatyana and Mol, Dick and Rathgeber, Thomas and Rosendahl, Wilfried and Tikhonov, Alexey N. and Willerslev, Eske and Hannon, Greg and Lalueza i Fox, Carles and Joger, Ulrich and Poinar, Hendrik N. and Hofreiter, Michael and Shapiro, Beth}, title = {The evolutionary and phylogeographic history of woolly mammoths}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44585}, pages = {10}, year = {2017}, abstract = {Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0-2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.}, language = {en} }