@unpublished{AizenbergTarkhanov2014, author = {Aizenberg, Lev A. and Tarkhanov, Nikolai Nikolaevich}, title = {An integral formula for the number of lattice points in a domain}, volume = {3}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70453}, pages = {7}, year = {2014}, abstract = {Using the multidimensional logarithmic residue we show a simple formula for the difference between the number of integer points in a bounded domain of R^n and the volume of this domain. The difference proves to be the integral of an explicit differential form over the boundary of the domain.}, language = {en} } @unpublished{AlsaedyTarkhanov2012, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {The method of Fischer-Riesz equations for elliptic boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61792}, year = {2012}, abstract = {We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.}, language = {en} } @unpublished{AlsaedyTarkhanov2015, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {Weak boundary values of solutions of Lagrangian problems}, volume = {4}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72617}, pages = {24}, year = {2015}, abstract = {We define weak boundary values of solutions to those nonlinear differential equations which appear as Euler-Lagrange equations of variational problems. As a result we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to the study of Lagrangian problems.}, language = {en} } @unpublished{AlsaedyTarkhanov2012, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {Spectral projection for the dbar-Neumann problem}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58616}, year = {2012}, abstract = {We show that the spectral kernel function of the dbar-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.}, language = {en} } @unpublished{AlsaedyTarkhanov2016, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {A Hilbert boundary value problem for generalised Cauchy-Riemann equations}, volume = {5}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86109}, pages = {21}, year = {2016}, abstract = {We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed problems, and construct an explicit formula for approximate solutions.}, language = {en} } @unpublished{AntonioukKiselevStepanenkoetal.2012, author = {Antoniouk, Alexandra Viktorivna and Kiselev, Oleg and Stepanenko, Vitaly and Tarkhanov, Nikolai Nikolaevich}, title = {Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61987}, year = {2012}, abstract = {The Dirichlet problem for the heat equation in a bounded domain is characteristic, for there are boundary points at which the boundary touches a characteristic hyperplane t = c, c being a constant. It was I.G. Petrovskii (1934) who first found necessary and sufficient conditions on the boundary which guarantee that the solution is continuous up to the characteristic point, provided that the Dirichlet data are continuous. This paper initiated standing interest in studying general boundary value problems for parabolic equations in bounded domains. We contribute to the study by constructing a formal solution of the Dirichlet problem for the heat equation in a neighbourhood of a characteristic boundary point and showing its asymptotic character.}, language = {en} } @unpublished{BagderinaTarkhanov2013, author = {Bagderina, Yulia Yu. and Tarkhanov, Nikolai Nikolaevich}, title = {Differential invariants of a class of Lagrangian systems with two degrees of freedom}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63129}, year = {2013}, abstract = {We consider systems of Euler-Lagrange equations with two degrees of freedom and with Lagrangian being quadratic in velocities. For this class of equations the generic case of the equivalence problem is solved with respect to point transformations. Using Lie's infinitesimal method we construct a basis of differential invariants and invariant differentiation operators for such systems. We describe certain types of Lagrangian systems in terms of their invariants. The results are illustrated by several examples.}, language = {en} } @unpublished{DyachenkoTarkhanov2012, author = {Dyachenko, Evgueniya and Tarkhanov, Nikolai Nikolaevich}, title = {Degeneration of boundary layer at singular points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60135}, year = {2012}, abstract = {We study the Dirichlet problem in a bounded plane domain for the heat equation with small parameter multiplying the derivative in t. The behaviour of solution at characteristic points of the boundary is of special interest. The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least 2. We allow the boundary to not only have contact of degree less than 2 with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.}, language = {en} } @unpublished{DyachenkoTarkhanov2014, author = {Dyachenko, Evgueniya and Tarkhanov, Nikolai Nikolaevich}, title = {Singular perturbations of elliptic operators}, volume = {3}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69502}, pages = {21}, year = {2014}, abstract = {We develop a new approach to the analysis of pseudodifferential operators with small parameter 'epsilon' in (0,1] on a compact smooth manifold X. The standard approach assumes action of operators in Sobolev spaces whose norms depend on 'epsilon'. Instead we consider the cylinder [0,1] x X over X and study pseudodifferential operators on the cylinder which act, by the very nature, on functions depending on 'epsilon' as well. The action in 'epsilon' reduces to multiplication by functions of this variable and does not include any differentiation. As but one result we mention asymptotic of solutions to singular perturbation problems for small values of 'epsilon'.}, language = {en} } @unpublished{ElinShoikhetTarkhanov2015, author = {Elin, Mark and Shoikhet, David and Tarkhanov, Nikolai Nikolaevich}, title = {Analytic semigroups of holomorphic mappings and composition operators}, volume = {4}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77914}, pages = {30}, year = {2015}, abstract = {In this paper we study the problem of analytic extension in parameter for a semigroup of holomorphic self-mappings of the unit ball in a complex Banach space and its relation to the linear continuous semigroup of composition operators. We also provide a brief review around this topic.}, language = {en} } @unpublished{FedchenkoTarkhanov2017, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {A Rad{\´o} Theorem for the Porous Medium Equation}, series = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, volume = {6}, journal = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102735}, pages = {12}, year = {2017}, abstract = {We prove that each locally Lipschitz continuous function satisfying the porous medium equation away from the set of its zeroes is actually a weak solution of this equation in the whole domain.}, language = {en} } @unpublished{FedchenkoTarkhanov2014, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {An index formula for Toeplitz operators}, volume = {3}, number = {12}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72499}, pages = {24}, year = {2014}, abstract = {We prove a Fedosov index formula for the index of Toeplitz operators connected with the Hardy space of solutions to an elliptic system of first order partial differential equations in a bounded domain of Euclidean space with infinitely differentiable boundary.}, language = {en} } @unpublished{FedchenkoTarkhanov2013, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {A Class of Toeplitz Operators in Several Variables}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68932}, year = {2013}, abstract = {We introduce the concept of Toeplitz operator associated with the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. We characterise those Toeplitz operators which are Fredholm, thus initiating the index theory.}, language = {en} } @unpublished{FedchenkoTarkhanov2016, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {Boundary value problems for elliptic complexes}, volume = {5}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86705}, pages = {12}, year = {2016}, abstract = {The aim of this paper is to bring together two areas which are of great importance for the study of overdetermined boundary value problems. The first area is homological algebra which is the main tool in constructing the formal theory of overdetermined problems. And the second area is the global calculus of pseudodifferential operators which allows one to develop explicit analysis.}, language = {en} } @unpublished{FedosovTarkhanov2015, author = {Fedosov, Boris and Tarkhanov, Nikolai Nikolaevich}, title = {Deformation quantisation and boundary value problems}, volume = {4}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77150}, pages = {27}, year = {2015}, abstract = {We describe a natural construction of deformation quantisation on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.}, language = {en} } @unpublished{GibaliShoikhetTarkhanov2015, author = {Gibali, Aviv and Shoikhet, David and Tarkhanov, Nikolai Nikolaevich}, title = {On the convergence of continuous Newton method}, volume = {4}, number = {10}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81537}, pages = {15}, year = {2015}, abstract = {In this paper we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.}, language = {en} } @unpublished{GrudskyTarkhanov2012, author = {Grudsky, Serguey and Tarkhanov, Nikolai Nikolaevich}, title = {Conformal reduction of boundary problems for harmonic functions in a plane domain with strong singularities on the boundary}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57745}, year = {2012}, abstract = {We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with nonsmooth boundary. The boundary curve belongs to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type. To study the problem we apply a familiar method of Vekua-Muskhelishvili which consists in using a conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic functions in the disk. This latter is reduced in turn to a Toeplitz operator equation on the unit circle with symbol bearing discontinuities of second kind. We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as well as explicit formulas for solutions.}, language = {en} } @unpublished{KiselevTarkhanov2012, author = {Kiselev, Oleg M. and Tarkhanov, Nikolai Nikolaevich}, title = {Scattering of autoresonance trajectories upon a separatrix}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56880}, year = {2012}, abstract = {We study asymptotic properties of solutions to the primary resonance equation with large amplitude on a long time interval.}, language = {en} } @unpublished{LyTarkhanov2007, author = {Ly, I. and Tarkhanov, Nikolai Nikolaevich}, title = {The cauchy problem for nonlinear elliptic equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30228}, year = {2007}, abstract = {This paper is devoted to investigation of the Cauchy problem for nonlinear elliptic equations with a small parameter.}, language = {en} } @unpublished{LyTarkhanov2015, author = {Ly, Ibrahim and Tarkhanov, Nikolai Nikolaevich}, title = {A Rad{\´o} theorem for p-harmonic functions}, volume = {4}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-71492}, pages = {10}, year = {2015}, abstract = {Let A be a nonlinear differential operator on an open set X in R^n and S a closed subset of X. Given a class F of functions in X, the set S is said to be removable for F relative to A if any weak solution of A (u) = 0 in the complement of S of class F satisfies this equation weakly in all of X. For the most extensively studied classes F we show conditions on S which guarantee that S is removable for F relative to A.}, language = {en} }