@phdthesis{Ronneberger2024, author = {Ronneberger, Sebastian}, title = {Nanolayer Fused Deposition Modeling (NanoFDM)}, school = {Universit{\"a}t Potsdam}, pages = {170}, year = {2024}, language = {en} } @phdthesis{Kanehira2023, author = {Kanehira, Yuya}, title = {Versatile DNA origami based SERS substrates for spectroscopic applications}, pages = {115}, year = {2023}, language = {en} } @phdthesis{Stechemesser2023, author = {Stechemesser, Annika}, title = {Human behaviour in a warming world}, school = {Universit{\"a}t Potsdam}, pages = {339}, year = {2023}, language = {en} } @phdthesis{Bastian2023, author = {Bastian, Martin}, title = {An emergent machine learning approach for seasonal cyclone activity forecasts}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2023}, abstract = {Seasonal forecasts are of great interest in many areas. Knowing the amount of precipitation for the upcoming season in regions of water scarcity would facilitate a better water management. If farmers knew the weather conditions of the upcoming summer at sowing time, they could select those cereal species that are best adapted to these conditions. This would allow farmers to improve the harvest and potentially even reduce the amount of pesticides used. However, the undoubted advantages of seasonal forecasts are often opposed by their high degree of uncertainty. The great challenge of generating seasonal forecasts with lead times of several months mainly originates from the chaotic nature of the earth system. In a chaotic system, even tiny differences in the initial conditions can lead to strong deviations in the system's state in the long run. In this dissertation we propose an emergent machine learning approach for seasonal forecasting, called the AnlgModel. The AnlgModel combines the analogue method with myopic feature selection and bootstrapping. To benchmark the abilities of the AnlgModel we apply it to seasonal cyclone activity forecasts in the North Atlantic and Northwest Pacific. The AnlgModel demonstrates competitive hindcast skills with two operational forecasts and even outperforms these for long lead times. In the second chapter we comprehend the forecasting strategy of the Anlg-Model. We thereby analyse the analogue selection process for the 2017 North Atlantic and the 2018 Northwest Pacific seasonal cyclone activity. The analysis shows that those climate indices which are known to influence the seasonal cyclone activity, such as the Ni{\~n}o 3.4 SST, are correctly represented among the selected analogues. Furthermore the selected analogues reflect large-scale climate patterns that were identified by expert reports as being determinative for these particular seasons. In the third chapter we analyse the features that are used by the AnlgModel for its predictions. We therefore inspect the feature relevance (FR). The FR patterns learned by the AnlgModel show a high congruence with the predictor regions used by the operational forecasts. However, the AnlgModel also discovered new features, such as the SST anomaly in the Gulf of Guinea during November. This SST pattern exhibits a remarkably high predictive potential for the upcoming Atlantic hurricane activity. In the final chapter we investigate potential mechanisms, that link two of these regions with high feature relevance to the Atlantic hurricane activity. We mainly focus on ocean surface transport. The ocean surface flow paths are calculated using Lagrangian particle analysis. We demonstrate that the FR patterns in the region of the Canary islands do not correspond with ocean surface transport. It is instead likely that these FR patterns fingerprint a wind transport of latent heat. The second region to be studied is situated in the Gulf of Guinea. Our analysis shows that the FR patterns seen there do fingerprint ocean surface transport. However, our simulations also show that at least one other mechanism is involved in linking the Gulf of Guinea SST anomaly in November to the hurricane activity of the upcoming season. In this work the AnlgModel does not only demonstrate its outstanding forecast skills but also shows its capabilities as research tool for detecting oceanic and atmospheric mechanisms.}, language = {en} } @phdthesis{Sharma2023, author = {Sharma, Anjali}, title = {Optical manipulation of multi-responsive microgels}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2023}, abstract = {This dissertation focuses on the understanding of the optical manipulation of microgels dispersed in aqueous solution of azobenzene containing surfactant. The work consists of three parts where each part is a systematic investigation of the (1) photo-isomerization kinetics of the surfactant in complex with the microgel polymer matrix, (2) light driven diffusiosmosis (LDDO) in microgels and (3) photo-responsivity of microgel on complexation with spiropyran. The first part comprises three publications where the first one [P1] investigates the photo-isomerization kinetics and corresponding isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged polymers or micro sized polymer networks to understand the structural response of such photo-sensitive complexes. We report that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in an aqueous solution. The surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration. This, along with the inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates, pushes the isomer-ratio to a higher trans-isomer concentration for all irradiation wavelengths. The second publication [P2] combines experimental results and non-adiabatic dynamic simulations for the same surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the slowdown in photo induced trans → cis azobenzene isomerization at concentrations higher than the critical micelle concentration (CMC). The simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles and observes a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans → cis switching in micelles of the azobenzene-containing surfactants. Finally, the third publication [P3] focusses on the kinetics of adsorption and desorption of the same surfactant within anionic microgels in the dark and under continuous irradiation. Experimental data demonstrate, that microgels can serve as a selective absorber of the trans isomers. The interaction of the isomers with the gel matrix induces a remotely controllable collapse or swelling on appropriate irradiation wavelengths. Measuring the kinetics of the microgel size response and knowing the exact isomer composition under light exposure, we calculate the adsorption rate of the trans-isomers. The second part comprises two publications. The first publication [P4] reports on the phenomenon of light-driven diffusioosmotic (DO) long-range attractive and repulsive interactions between micro-sized objects, whose range extends several times the size of microparticles and can be adjusted to point towards or away from the particle by varying irradiation parameters such as intensity or wavelength of light. The phenomenon is fueled by the aforementioned photosensitive surfactant. The complex interaction of dynamic exchange of isomers and photo-isomerization rate yields to relative concentrations gradients of the isomers in the vicinity of micro-sized object inducing a local diffusioosmotic (DO) flow thereby making a surface act as a micropump. The second publication [P5] exclusively aims the visualization and investigation of the DO flows generated from microgels by using small tracer particles. Similar to micro sized objects, the flow is able to push adjacent tracers over distances several times larger than microgel size. Here we report that the direction and the strength of the l-LDDO depends on the intensity, irradiation wavelength and the amount of surfactant adsorbed by the microgel. For example, the flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure at 455 nm when the trans:cis ratio is 2:1, whereas irradiation at 365 nm, generates a radially transient flow pattern, which inverts at lower intensities. Lastly, the third part consists of one publication [P6] which, unlike the previous works, reports on the study of the kinetics of photo- and thermo-switching of a new surfactant namely, spiropyran, upon exposure with light of different wavelengths and its interaction with p(NIPAM-AA) microgels. The surfactant being an amphiphile, switches between its ring closed spiropyran (SP) form and ring open merocyanine (MC) form which results in a change in the hydrophilic-hydrophobic balance of the surfactant as MC being a zwitterionic form along with the charged head group, generates three charges on the molecule. Therefore, the MC form of the surfactant is more hydrophilic than in the case of the neutral SP state. Here, we investigate the initial shrinkage of the gel particles via charge compensation on first exposure to SP molecules which results from the complex formation of the molecules with the gel matrix, triggering them to become photo responsive. The size and VPTT of the microgels during irradiation is shown to be a combination of heating up of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.}, language = {en} } @phdthesis{Sajedi2023, author = {Sajedi, Maryam}, title = {Investigation of metal-halide-perovskites by state-of-the-art synchrotron-radiation methods}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 149}, year = {2023}, abstract = {My thesis chiefly aims to shed light on the favourable properties of LHP semiconductors from the point of view of their electronic structure. Currently, various hypotheses are circulating to explain the exceptionally favourable transport properties of LHPs. Seeking an explanation for the low non-radiative recombination rates and long carrier lifetimes is particularly interesting to the halide perovskites research community. The first part of this work investigates the two main hypotheses that are believed to play a significant role: the existence of a giant Rashba effect and large polarons. The experimental method of ARPES is mainly applied to verify their credibility. The first hypothesis presumes that a giant Rashba effect restricts the recombination losses of the charge carriers by making the band gap slightly indirect. The Rashba effect is based on a strong SOC that could appear in LHPs thanks to incorporating the heavy element Pb in their structure. Earlier experimental work had pointed out this effect at the VBM of a hybrid LHP as a viable explanation for the long lifetimes of the charge carriers. My systematic ARPES studies on hybrid MAPbBr3 and spin-resolved ARPES studies on the inorganic CsPbBr3 disprove the presence of any Rashba effect in the VBM of the reported order of magnitude. Therefore, neither the spin texture nor an indirect band gap character at the VBM in the bulk or at the surface can explain the high efficiency of LHP. In case of existence, this effect is in terms of the Rashba parameter at least a factor of a hundred smaller than previously assumed. The second hypothesis proposes large polaron formation in the electronic structure of LHPs and attributes it to their high defect tolerance and low non-radiative recombination rate. Because the perovskite structure consists of negative and positive ions, polarons of this kind can be expected due to the Coulomb interaction between carriers and the polar lattice at intermediate electron-phonon coupling strength. Their existence is proposed to screen the carriers and defects to avoid recombination and trapping, thus leading to long carrier lifetimes. ARPES results by one group supported this assumption, reporting a 50\% effective mass enhancement over the theoretical effective mass for CsPbBr3 in the orthorhombic structure. The current thesis examines this hypothesis experimentally by photon-energy-dependent ARPES spectra and theoretically by GW band calculations of CsPbBr3 perovskites. The investigation is based on the fact that a polaron contribution in charge transport can become evident by an increase of the effective mass as measured by ARPES over the calculated one without polaron effects. However, my experiments on crystalline CsPbBr3 did not imply a larger effective mass for which one could postulate large polarons. In fact, the effective masses determined from ARPES agree with that of theoretical predictions. The second part of my thesis thoroughly investigates the possibility of spontaneously magnetizing LHPs by introducing Mn2+ ions. Mn doping was reported to cause ferromagnetism in one of the most common LHPs, MAPbI3, mediated by super-exchange. The current work investigates the magnetic properties of a wide concentration range of Mn-doped MAPbI3 and triple-cation films by XAS, XMCD, and SQUID measurements. Based on the XAS line shape and a sum-rule analysis of the XMCD spectra, a pure Mn2+ configuration has been confirmed. Negative Curie temperatures are extracted from fitting the magnetization with a Curie-Weiss law. However, a remanent magnetization, which would be an indication of the absence of ferromagnetism down to 2K. As far as the double exchange is concerned, the element-specific XAS excludes a sufficient amount of Mn3+ as a prerequisite for this mechanism. All the findings show no evidence of significant double exchange or ferromagnetism in Mn-doped LHPs. The magnetic behavior is paramagnetic rather than ferromagnetic. In the dissertation's last chapter, orthorhombic features of CsPbBr3 are revealed by ARPES, including an extra VBM at the Γ-point. The VBM of CsPbBr3 shows a temperature-dependent splitting, which decreases by 190 meV between 38K and 300K and tracks a shift of a saddle point at the cubic M-point. It is possible to reproduce the energy shift using an atomic model with a larger unit cell for room temperature, allowing local inversion symmetry breaking. This indicates the importance of electric dipoles for the inorganic LHPs, which may contribute to their high efficiency by breaking inversion symmetry and a Berry-phase effect.}, language = {en} } @phdthesis{Valade2023, author = {Valade, Aurelien Niels Valentin}, title = {Unveiling the Local Universe}, school = {Universit{\"a}t Potsdam}, pages = {X, 102}, year = {2023}, language = {en} } @phdthesis{Kairaliyeva2023, author = {Kairaliyeva, Talmira}, title = {Surfactant adorption at liquid interfaces measured by drop and bubble experiments}, school = {Universit{\"a}t Potsdam}, pages = {VII, 117}, year = {2023}, language = {en} } @phdthesis{Kotz2022, author = {Kotz, Maximilian}, title = {The economic costs of climate change}, school = {Universit{\"a}t Potsdam}, pages = {279}, year = {2022}, language = {en} } @phdthesis{Dixit2023, author = {Dixit, Sneha}, title = {Tension-induced conformational changes of the Piezo protein-membrane nano-dome}, school = {Universit{\"a}t Potsdam}, pages = {94}, year = {2023}, abstract = {Mechanosensation is a fundamental biological process that provides the basis for sensing touch and pain as well as for hearing and proprioception. A special class of ion-channel proteins known as mechanosensitive proteins convert the mechanical stimuli into electrochemical signals to mediate this process. Mechanosensitive proteins undergo conformational changes in response to mechanical force, which eventually leads to the opening of the proteins' ion channel. Mammalian mechanosensitive proteins remained a long sought-after mystery until 2010 when a family of two proteins - Piezo1 and Piezo2 - was identifed as mechanosensors [1]. The cryo-EM structures of Piezo1 and Piezo2 protein were resolved in the last years and reveal a propeller-shaped homotrimer with 114 transmembrane helices [2, 3, 4, 5]. The protein structures are curved and have been suggested to deform the surrounding membrane into a nano-dome, which mechanically responds to membrane tension resulting from external forces [2]. In this thesis, the conformations of membrane-embedded Piezo1 and Piezo2 proteins and their tension-induced conformational changes are investigated using molecular dynamics simulations. Our coarse-grained molecular dynamics simulations show that the Piezo proteins induce curvature in the surrounding membrane and form a stable protein-membrane nano-dome in the tensionless membrane. These membrane-embedded Piezo proteins, however, adopt substantially less curved conformations in our simulations compared to the cryo-EM structures solved in detergent micelles, which agrees with recent experimental investigations of the overall Piezo nano-dome shape in membrane vesicles [6, 7, 8]. At high membrane tension, the Piezo proteins attain nearly planar conformations in our simulations. Our systematic investigation of Piezo proteins under different membrane tensions indicates a half-maximal conformational response at membrane tension values rather close to the experimentally suggested values of Piezo activation [9, 10]. In addition, our simulations indicate a widening of the Piezo1 ion channel at high membrane tension, which agrees with the channel widening observed in recent nearly flattened cryo-EM structures of Piezo1 in small membrane vesicles [11]. In contrast, the Piezo2 ion channel does not respond to membrane tension in our simulations. These different responses of the Piezo1 and Piezo2 ion channels in our simulations are in line with patch-clamp experiments, in which Piezo1, but not Piezo2, was shown to be activated by membrane tension alone [12].}, language = {en} } @phdthesis{Piankova2022, author = {Piankova, Diana}, title = {Electron pair distribution function (ePDF) analysis and advanced transmission electron microscopy (TEM) techniques}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 146}, year = {2022}, language = {en} } @phdthesis{Stoll2022, author = {Stoll, Andreas}, title = {Advanced spectroscopic instruments enabled by integrated optics}, school = {Universit{\"a}t Potsdam}, pages = {97, XV}, year = {2022}, abstract = {The aim of this work is the study of silica Arrayed Waveguide Gratings (AWGs) in the context of applications in astronomy. The specific focus lies on the investigation of the feasibility and technology limits of customized silica AWG devices for high resolution near-infrared spectroscopy. In a series of theoretical and experimental studies, AWG devices of varying geometry, foot-print and spectral resolution are constructed, simulated using a combination of a numerical beam propagation method and Fraunhofer diffraction and fabricated devices are characterized with respect to transmission efficiency, spectral resolution and polarization sensitivity. The impact of effective index non-uniformities on the performance of high-resolution AWG devices is studied numerically. Characterization results of fabricated devices are used to extrapolate the technology limits of the silica platform. The important issues of waveguide birefringence and defocus aberration are discussed theoretically and addressed experimentally by selection of an appropriate aberration-minimizing anastigmatic AWG layout structure. The drawbacks of the anastigmatic AWG geometry are discussed theoretically. From the results of the experimental studies, it is concluded that fabrication-related phase errors and waveguide birefringence are the primary limiting factors for the growth of AWG spectral resolution. It is shown that, without post-processing, the spectral resolving power is phase-error-limited to R < 40, 000 and, in the case of unpolarized light, birefringence-limited to R < 30, 000 in the AWG devices presented in this work. Necessary measures, such as special waveguide geometries and post-fabrication phase error correction are proposed for future designs. The elimination of defocus aberration using an anastigmatic AWG geometry is successfully demonstrated in experiment. Finally, a novel, non-planar dispersive in-fibre waveguide structure is proposed, discussed and studied theoretically.}, language = {en} } @phdthesis{Spaeker2022, author = {Sp{\"a}ker, Oliver C.}, title = {Structure-property-function relationships in the cornea of Limulus polyphemus}, pages = {VIII, 110, A16}, year = {2022}, language = {en} } @phdthesis{Velk2022, author = {Velk, Natalia}, title = {Investigation of the interaction of lysozyme with poly(l-lysine)/hyaluronic acid multilayers}, school = {Universit{\"a}t Potsdam}, pages = {85}, year = {2022}, language = {en} } @phdthesis{Born2021, author = {Born, Artur}, title = {Electronic structure, quasi-particle interaction and relaxation in 3d-elements from X-ray spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{Born2021, author = {Born, Artur}, title = {Electronic structure, quasi-particle interaction and relaxation in 3d-elements from X-ray spectroscopy}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2021}, abstract = {Any physical system can be described on the level of interacting particles, thus it is of fundamental importance to improve the scientific understanding of interacting many-body systems. This thesis experimentally addresses specific quasi-particle interactions, namely interactions be- tween electrons and between electrons and phonons. It describes the consequential effects of those processes on the electronic structure and the core-hole relaxation pathways in 3d metals. Despite the great amount of experimental and theoretical studies of these interactions and their impact on the behavior of solid-state matter, there are still open questions concerning the cor- responding physical, chemical and mechanical properties of solid-state matter. Especially, the study of 3d metals and their compounds is a great experimental challenge, since those exhibit a variety of spectral features originating from many-body effects such as multiplet splitting, shake up/off satellites, vibrationally excited states or more complex effects like superconductivity and ultrafast demagnetization. In X-ray spectroscopy, these effects often produce overlapping fea- tures, complicating the analysis and limiting the understanding. In this thesis, to overcome the limitations set by conventional X-ray spectroscopy, two different experimental approaches were successfully refined, namely Auger electron photoelectron coincidence spectroscopy (APECS) and temperature-dependent X-ray emission spectroscopy (tXES), which enabled the separation of different core-hole relaxation pathways and the isolation of the impact of specific many-body interactions in the experimental spectra. APECS was utilized at the new Coincidence electron spectroscopy for chemical analysis (Co- ESCA) station at BESSY II to study the core-hole decay and electron-correlation effects in single- crystal Ni, Cu and Co. The observation of photoelectrons in coincidence with Auger electrons allows for the separation of the initial and final state effects in the Auger electron spectra. The results show that a Cu LV V Auger spectrum can be represented by broadened atomic multiplets confirming the localized nature of the intermediate core-hole states. In contrast, the Co LV V Auger spectrum is band-like and can be represented by the self-convolution of the valence band. Ni behaves mixed, localized and itinerant. Thus, the Ni Auger spectrum can only be represented by a mixture of atomic multiplet peaks and the self-convoluted valence band. In the case of Ni, the LV V Auger electrons in coincidence with the 6 eV satellite photoelectrons were also stud- ied. Utilizing the core-hole clock method, the lifetime of the localized double-hole intermediate 2 p53d9 states of 1.8 fs could be determined. However, a fraction of these states delocalizes before the Auger decay contributing to the main peak. A similar delocalization was observed for the double-hole states produced by the L2L3M4,5 Coster-Kronig process. Additionally, the influence of surface oxidation on the Ni(111) 3p levels was studied with APECS. The Ni 3p PES spectrum is broad and featureless, due to overlapping many-body effects and gives little chance for exact analysis using conventional photoelectron spectroscopy. Utilizing APECS or precisely the final state selectivity of the method, the spectral width of the 3p levels could be narrowed and their positions and the spin-orbit splitting were determined. Moreover, due to the surface sensitivity of the method, the chemically shifted 3p photoelectron peaks originating from the oxidized surface and the bulk Ni were disentangled. For the study of the atomic electron-phonon spin-flip scattering in 3d metals as a spin-relaxation channel, the tXES method at the SolidFlexRIXS station was developed. The atomic spin-flip scat- tering was studied in single-crystal Ni, Cu, Co and in FeNi alloys, which show considerable dif- ferences in their behavior. The scattering rate in Ni increases with temperature, whereas the rate in Cu and Co remains constant within the measured temperature range up to 1000 K. In FeNi alloys, our results reveal that the spin-flip scattering is restricted by sublattice exchange energies J. The electron-phonon scattering driven spin-flips only appear in the case where the thermal energy ex- ceeds the exchange energy kT > J. This thresholding is an important microscopic process for the description of the sublattice dynamics in alloys, but as shown also relevant for elemental magnetic systems. Overall, the results strongly indicate that the spin-flip probability is correlated with the exchange energy, which might become an important parameter in the ultrafast demagnetization debate. Taken together, the applied experimental approaches allowed to study complex many-body effects in 3d metals. The results show that utilizing APECS enabled the distinction and clear assignment of otherwise overlapping features in AES or PES spectra of Ni, Cu, Co and NiO. This is of fundamental importance for the basic understanding of photoionization and core-hole decay processes but also for the chemical analysis in applied science. The measurement of the atomic electron-phonon spin-flip scattering rate utilizing tXES shows that the electron-phonon spin-flip scattering is a relevant atomic process for the macroscopic demagnetization process. Additionally, a temperature-dependent thresholding mechanism was discovered, which introduces an important dynamic factor into the electron-phonon spin-flip model.}, language = {en} } @phdthesis{Zhang2021, author = {Zhang, Heshou}, title = {Magnetic fields in the universe}, school = {Universit{\"a}t Potsdam}, pages = {vi, 107}, year = {2021}, abstract = {The galactic interstellar medium is magnetized and turbulent. The magnetic field and turbulence play important roles in many astrophysical mechanisms, including cosmic ray transport, star formation, etc. Therefore, measurements of magnetic field and turbulence information are crucial for the proper interpretation of astronomical observations. Nonetheless, the magnetic field observation is quite challenging, especially, there is not universal magnetic tracer for diffuse medium. Moreover, the modelling of turbulence can be oversimplified due to the lack of observational tools to diagnose the plasma properties of the turbulence in the galactic interstellar medium. The studies presented in this thesis have addressed these challenges by bridging the theoretical studies of magnetic field and turbulence with numerical simulations and observations. The following research are presented in this thesis. The first observational evidence of the novel magnetic tracer, ground state alignment (GSA), is discovered, revealing the three-dimensional magnetic field as well as 2 orders of magnitude higher precision comparing to previous observational study in the stellar atmosphere of the post-AGB 89 Herculis. Moreover, the application of GSA in the sub-millimeter fine-structure lines is comprehensively studied for different elements and with magnetohydrodynamic simulations. Furthermore, the influence of GSA effect on the spectroscopy is analyzed and it is found that measurable variation will be produced on the spectral line intensity and the line ratio without accounting for the optical pumping process or magnetic field. Additionally, a novel method to measure plasma modes in the interstellar medium, Signatures from Polarization Analysis (SPA), is proposed and applied to real observations. Magneto-sonic modes are discovered in different types of interstellar medium. An explanation is provided for the long-standing mystery, the origin of γ-ray enhanced emission "Cygnus Cocoon", based on the comparison between the outcome of SPA and multi-waveband observational data. These novel methods have strong potentials for broader observational applications and will play crucial roles in future multi-wavelength astronomy.}, language = {en} } @phdthesis{Dineva2021, author = {Dineva, Ekaterina Ivanova}, title = {Sun-as-a-star Spectroscopy with PEPSI}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2021}, language = {en} } @phdthesis{Keles2021, author = {Keles, Engin}, title = {Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres.}, language = {en} } @phdthesis{Thapa2020, author = {Thapa, Samudrajit}, title = {Deciphering anomalous diffusion in complex systems using Bayesian inference and large deviation theory}, pages = {xx, 186}, year = {2020}, abstract = {The development of methods such as super-resolution microscopy (Nobel prize in Chemistry, 2014) and multi-scale computer modelling (Nobel prize in Chemistry, 2013) have provided scientists with powerful tools to study microscopic systems. Sub-micron particles or even fluorescently labelled single molecules can now be tracked for long times in a variety of systems such as living cells, biological membranes, colloidal solutions etc. at spatial and temporal resolutions previously inaccessible. Parallel to such single-particle tracking experiments, super-computing techniques enable simulations of large atomistic or coarse-grained systems such as biologically relevant membranes or proteins from picoseconds to seconds, generating large volume of data. These have led to an unprecedented rise in the number of reported cases of anomalous diffusion wherein the characteristic features of Brownian motion—namely linear growth of the mean squared displacement with time and the Gaussian form of the probability density function (PDF) to find a particle at a given position at some fixed time—are routinely violated. This presents a big challenge in identifying the underlying stochastic process and also estimating the corresponding parameters of the process to completely describe the observed behaviour. Finding the correct physical mechanism which leads to the observed dynamics is of paramount importance, for example, to understand the first-arrival time of transcription factors which govern gene regulation, or the survival probability of a pathogen in a biological cell post drug administration. Statistical Physics provides useful methods that can be applied to extract such vital information. This cumulative dissertation, based on five publications, focuses on the development, implementation and application of such tools with special emphasis on Bayesian inference and large deviation theory. Together with the implementation of Bayesian model comparison and parameter estimation methods for models of diffusion, complementary tools are developed based on different observables and large deviation theory to classify stochastic processes and gather pivotal information. Bayesian analysis of the data of micron-sized particles traced in mucin hydrogels at different pH conditions unveiled several interesting features and we gained insights into, for example, how in going from basic to acidic pH, the hydrogel becomes more heterogeneous and phase separation can set in, leading to observed non-ergodicity (non-equivalence of time and ensemble averages) and non-Gaussian PDF. With large deviation theory based analysis we could detect, for instance, non-Gaussianity in seeming Brownian diffusion of beads in aqueous solution, anisotropic motion of the beads in mucin at neutral pH conditions, and short-time correlations in climate data. Thus through the application of the developed methods to biological and meteorological datasets crucial information is garnered about the underlying stochastic processes and significant insights are obtained in understanding the physical nature of these systems.}, language = {en} }